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Preface 

This meeting is the second in a regular series started in October 1997 at Oxnard, California. Since then, the 
importance of automated planning and scheduling for the space enterprise has become increasingly clear. 
NASA technologists and computer scientists have also demonstrated the practical feasibility of these 
technologies in the context of real missions. For example, the Deep Space 1 Remote Agent Experiment in 
May 1999 for the first time demonstrated the use of a planner/scheduler operating within the high-level 
closed-loop control of a spacecraft traveling in interplanetary space. However, to make Planning and 
Scheduling a ubiquitous technology for space missions, many challenges still remain, including issues in 
design, development and fielding of such systems in mission critical areas of spacecraft operations. For 
example:  

• Responsiveness: When operating within a closed-loop control system, issues related to 
responsiveness and balance between deliberation and reactivity become more and more important. 
So far we do not have good answers on how to coherently insert planning activities with different 
reactivity guarantees at the different levels of an optimizing, hierarchical control system.  

• Validation: Validating the behavior of an automated planner/scheduler in an operational context 
is a major challenge. An automated planner makes it possible for a system to adapt its actions to 
changing execution conditions. However, we still do not know how to guarantee that a plan 
generated in a previously untested situation will indeed operate the system correctly and safely.  

• Mixed-Initiative autonomy: As planning systems become an integral part of mission operation 
concepts, it becomes crucial to solve the problem of guaranteeing a seamless collaboration 
between automated schedulers and human operators. This includes support for variable levels of 
autonomy, representational formalisms for doing mixed-initiative reasoning, resolving conflicts 
between operator requests and existing plans or flight rules and providing the operator with 
explanations or insight into the behavior of the planning system.  

• Mission acceptance: Gaining acceptance of planning and scheduling technology for real missions 
requires balancing the promise of advanced technology with the need for safety and reliability. 
The underlying representation, algorithms, interface with existing tools, and user interface all play 
important roles in the final usefulness and usability of the technology.  

The papers in this workshop address these and other issues in the context of space missions and 
applications involving both completely automated systems and those with human intervention in the 
exploration of space. Within this area, planning and scheduling is important in (but not restricted to) 

o Spacecraft commanding and payload operations;  

o Operations of air, space and ground based scientific observatories;  

o Scheduling of critical resources whether on the ground or onboard;  

o Science data analysis;  

o Design and analysis of spacecraft systems;  

o Planning and scheduling of scientific experiments;  

o Planning and scheduling for life support systems;  

o Operations and payload scheduling for space transportation systems.  

One important goal of the workshop was to foster a lively debate between academic researchers, 
technologists and mission users. For this reason the plenary session papers are accompanied by a 
commentary. We selected the author of the commentary to be a member of a different community than that 
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of the paper’s author. For example, a paper with dealing primaril y with scheduling research issues was 
commented by a mission operation specialist and vice versa.  

I want to express my gratitude to the various organizations and individuals that have made this workshop 
possible. The program committee and the commentators were instrumental in guaranteeing the success of 
the paper review process. I am also grateful to USRA-RIACS and to the Computational Sciences Division 
of NASA Ames for their generous support. Least, but definitely not last, this workshop is happening 
primaril y for the tireless effort of the organizing committee:  Kanna Rajan, Jeremy Frank, Rich 
Washington, and Keith Golden. In addition, Bob Duffy and Nicole Masjedizadeh of the Code IC Outreach 
group have been of tremendous help with the publi city and publi cations aspect of the workshop. In 
particular, Kanna has been the major propulsive force behind the workshop, not just organizationally but 
also technically. Without him nothing would have happened. 

 

Nicola Muscettola 
Mountain View, CA 
March 2000 
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Generating a Long Range Plan for a New Class of Astronomical Observatories

Laurence A. Kramer

Space Telescope Science Institute (STScI)
3700 San Martin Drive
Baltimore, MD 21218

kramer@stsci.edu
Abstract

We present a long range planning (LRP) system, the Spike
Plan Window Scheduler, which has been in use for observa-
tions on the Hubble Space Telescope (HST) for the past four
years and which is being adapted for the Space Infrared
Telescope Facility (SIRTF) and Next Generation Space
Telescope (NGST) orbiting astronomical observatories. Due
to the relatively underconstrained nature of this domain,
generating a long range plan is not handled in the traditional
AI planning sense of generating operators to achieve goals.
Rather, producing an LRP is treated as a type of scheduling
problem where what is being scheduled are not the scientific
observations themselves, but “plan windows” for the scien-
tific observations. This paper investigates planning subprob-
lems which arise in this type of domain. In particular, we
discuss the SIRTF Long Range Plan which requires plan-
ning of “instrument campaigns” in conjunction with obser-
vation plan window scheduling.

Introduction

Automated planning systems for planetary missions are
faced with a problem involving months of relative inactiv-
ity followed by a few hours of intense activity that must be
planned with great precision. In contrast, orbiting astro-
nomical observatories have a much more constant rate of
activity, but the bulk of the scientific activities are relatively
underconstrained as to when they can schedule and how
they should schedule with respect to each other. Scientific
observations for the new observatories SIRTF and NGST
will be even less constrained than for HST in that these
observatories will not be placed in a low Earth orbit and
will thus have less restricted observing windows. For these
observatories, though, there will continue to be a premium
on achieving high observatory efficiency while addressing
planning and scheduling problems peculiar to each obser-
vatory.

In this paper we describe the Spike Plan Window Sched-
uler [Giuliano, 1997] which is used to generate a Long
Range Plan for the Hubble Space Telescope. We have con-
fronted a number of interesting challenges in modifying the
Plan Window Scheduler for the SIRTF observatory.
Addressing these challenges has shown that while long

range planning can be treated as a scheduling proble
there are still planning issues to tackle during the process
scheduling.

The Domain

The advent of orbiting astronomical observatories has ge
erated a need for software systems to automate plann
and scheduling of activities on those observatories. For
purposes of this paper we mainly will consider activitie
that are of interest to a long range planner. These are
actual scientific observations, which can be thought of
the “pictures” that the telescope takes (in fact, these “p
tures” could be spectrograph readings or images in non-v
ible light spectra).

For the most part, these observations are of targets t
are fixed with respect to our solar system -- galaxies, sta
even visibly blank areas of the sky that may prove intere
ing. Now, if an astronomer wants to take a picture of th
Eagle Nebula (M16), it doesn’t matter too much wheth
she takes the picture today, tomorrow, or next week. T
target’s not going anywhere. If the observatory, like HST,
in a relatively close in orbit of the Earth, it is not accurate t
say that she can take the picture of the Eagle Nebula atany
time. Most instruments on the telescope are sensitive to
much light, so there are certain observing times when t
Eagle Nebula is too close to the Sun, or the Moon, or t
bright Earth itself to take an observation. In addition, the
are many other valid scientific reasons why an observati
can’t be performed during certain times with certain instru
ments. For fixed targets, though, the conjunction of a
these constraints on observing leaves one with a (possi
discontinuous) observation window which is still on th
order of days or weeks in duration. We refer to these fea
ble observation windows asconstraint windows.

Often, two or more observations have constraints plac
upon them linking their relative execution times. Fo
instance we might specify several observations of a Cep
variable star to be taken one week after each other. Ev
these types of constraints do not generally alter the durat
very much of theinitial constraint windows for the individ-
ual observations. We emphasizeinitial, since as observa-
tions are fixed to absolute times on a short term schedu
their linked successor observations can see their constr
windows collapse radically through constraint propagatio
2          2nd NASA International Workshop on Planning and Scheduling for Space
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This issue is treated in great depth in [Kramer and Giuliano,
1997] and we will investigate some consequences for long
range planning later in this paper.

There is another significant, though numerically much
smaller, class of observations for HST and other observato-
ries. This is the class of “moving” targets. Generally, these
are objects in our solar system like planets or moons and
objects that enter the solar system on a periodic basis (e.g.
comets). These observations may have a number of small,
choppy constraint windows throughout the year, or a singu-
lar small window for even rarer events such as a view of
Saturn’s rings edge-on. In addition, a small percentage of
viewing time for orbiting observatories is allocated to
events that cannot be predicted in advance. These “targets
of opportunity” include such phenomena as supernova.

Several newer observatories such as SIRTF and NGST
are being designed to orbit farther away from the Earth.
This will have the effect of increasing the duration of base-
line constraint windows for observations from the days to
weeks range experienced with HST to a range of weeks to
months. And while it will certainly be the case that many
short termactivities for these observatories will be much
easier to schedule, there will still be a number of the same
issues -- moving targets, targets of opportunity, and contin-
gent observations -- which complicates long range plan-
ning.

Although the bulk of observations for HST and other
orbiting observatories are of the relatively underconstrained
variety, there are a number of reasons why constraint win-
dows, while of reasonable duration, do not remain com-
pletely stable over the course of a long range planning
period (typically, a year to year-and-a-half). That is, the
constraint windows will remain fairly stable in size, but
may shift in time. There are a number of reasons for this:

• The ephemeris (position over time) of the observatory is
not known accurately more than a few months in advance,
causing constraint calculations to change over time.

• Performance of components on the satellite may change or
degrade over time, requiring new operating scenarios.

• Observers refine their observing programs over time.
[Giuliano, 1997]

Success Criteria for a Long Range Planner for
Orbiting Astronomical Observatories

Efficiency. Orbiting astronomical observatories are an
expensive investment with a limited life span. It is impor-
tant that the long range planner be designed so as to maxi-
mize the amount and quality of scientific observations
performed by adequately informing a short term scheduler
when and what to schedule. Also, the long range planner
should help optimize the use of finite resources such as pro-
pellants and coolants so as to prolong the life of the obser-
vatory.

Stability. It is usually the case that principal investigators
(PIs) responsible for an observing program use a long range
plan’s “best promise” of when their observations will
schedule to plan their future work: hiring of graduate stu-
dents, data analysis, and planning of coordinated observa-

tions. It is important that a long range planner produce
plan that remains as stable as possible over an exten
time span.

Mutability . As pointed out, there are a number of caus
which might affect where an individual observation or se
of observations might feasibly be planned. A long rang
planner should be able to revise the parts of the plan wh
need to change without adversely affecting the stability
goodness of the long range plan as a whole.

Long Range Planning for HST

Since launch in 1990 the Spike system [Johnston a
Miller, 1994] has been used to generate a long range p
for the Hubble Space Telescope. For the first five years
operations the Spike Long Range Planner produced pla
which were not successful in meeting any of three criter
listed above. The plans led to low efficiency schedule
were unstable, and were very resistant to incremen
change. Why was this? An important reason was that t
original planner planned observations to week long bins f
input to a short term scheduler. By design these bins had
be well oversubscribed so that there would be an adequ
mix for the scheduler. Unfortunately, it is hard to tell what
good mix will be without access to most of the knowledg
of the short term scheduler. Months ahead of time this ta
is virtually impossible. As a result, many weeks’ schedule
based on input from the Spike LRP were well undersu
scribed and some well oversubscribed. Observations t
couldn’t be scheduled in their target week would need to
replanned, and possibly put off an entire year if highly co
strained.

To address these problems the long range planning s
tem for HST was redesigned. Central to this redesign wa
rethinking of the HST planning and scheduling operatio
concept. Based on this new operations concept and ma
taining the very sound underpinnings of the Spike system
the constraint propagator and astronomical objects mode
new long range planner was substituted for the old one.

The Plan Window Operations Concept

The long range planner creates approximate 4-8 weekplan
windows for observations. A plan window is a subset of an
observation’s constraint windows, and represents a bes
effort commitment to schedule in the window. Plan windows
for different observations can be overlapping. In addition the
windows for a single observation can be non-contiguous.
[Giuliano, 1997]

By design now the long range plan is slightly undersu
scribed, but when the short term schedule creates a ti
line for a given week it has a large pool of observation
from which to choose. A good and efficient scheduling m
can be generated. Many observations in the pool produc
by the planner willnot be chosen for a given week’s sched
ule, but typically these observations will be able to b
scheduled in a later week of their plan window. Observ
tions which are in the last week of their plan window ar
given priority for scheduling on the next short term sche
ule.
2nd NASA International Workshop on Planning and Scheduling for Space          3
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The SPIKE Plan Window Scheduler

The new long range planner which implements the plan
windows operations concept is the Spike Plan Window
Scheduler. It can be described as

...a function which maps a set of input observing programs,
search criteria, and a previous long range plan into a new
long range plan. On execution of a long range plan the obser-
vations are partitioned into those which have [plan] windows
assigned in the input LRP and those which do not have input
windows. In general the scheduler will assign new windows
to those observations which are not scheduled in the input
plan and will pass through windows for observations which
are scheduled in the input plan. The system assigns windows
for observations which are not scheduled in the input plan in
two steps. First, the system uses user defined criteria to
greedily find the best window for each observation. In the
second step a stochastic search is used to adjust the resource
levels. [Giuliano, 1997]

Basically the Plan Window Scheduler is treating the
planning process as a problem of constrained optimization
where it tries to find the best subinterval of an observation’s
constraint windows to assign as a plan window. The objec-
tive function which is evaluated considers a number of cri-
teria specific to an observation as well as criteria which will
produce a good plan globally. Each individual active crite-
rion will return a score as a real number between 0 and 1
inclusive. The criteria are weighted individually to express
their relative importance to the overall scoring function.
New planning criteria can be added to the planner as
needed.

An example of a criterion that affects a small group of
observations would be: “Attempt to schedule plan windows
for observations in the same observing program as closely
together as possible.” Thus, if OB1 and OB2 are in the same
observing program, but are planned a year apart, this crite-
rion will return a score close to 0. If the plan windows for
the two observations are identical, the score will be 1. An
example of a planning criterion that is global in nature is
one which balances resources across the extent of the plan-
ning period.

Plan Window Scheduler Architecture

The Spike Plan Window Scheduler is implemented as a
CLOS program in Allegro Common Lisp, currently running
on Sun/Solaris. There are separate modules for the Planning
Criteria, the Resource Model, and the Scheduler. The
Scheduler is comprised of one or more Scheduling Steps,
which can be independent of each other, and thus added to,
deleted, and specialized as necessary. For HST we initially
implemented two scheduling steps: FIND-BEST and
REPAIR. The FIND-BEST step finds the best plan window
for each observation mostly independent of other observa-
tions. The REPAIR step is implemented as a specialization
of FIND-BEST to level resource imbalances such as
expected observation duration per day. REPAIR uses the
same code as FIND-BEST, but adds two additional criteria
to the scoring function: a randomizing criterion which adds
a stochastic element to the search and a resource criterion.

The Plan Window Scheduler is run daily to generate
new Long Range Plan for HST. Each new plan is basica
the previous plan plus additions for new observations a
alterations for observations that have been changed or fi
on a short-term schedule. Small changes in an observatio
constraint windows do not cause replanning of that obs
vation. Its assigned plan windows are intersected with t
new constraint windows to produce possibly somewh
smaller plan windows. In some cases a change in constra
windows necessitates no change in plan windows.

A recent modification illustrates the modularity of the
Plan Window Scheduler design. As noted above plan w
dows are adjusted for constraint windows that are sligh
smaller or that have shifted away from the plan window
somewhat. One scenario that wasn’t being automatica
handled was generating new plan windows for an obser
tion whose constraint windows have “relaxed” around a
existing tightly restricted plan window. In order to increas
scheduling flexibility it was desirable to automatically
expand existing plan windows as constraint windows gro
This problem was solved without modifying existing code
but by adding a new EXPAND-PWS step to the schedul
It reuses code from FIND-BEST, but applies different plan
ning criteria which maintain an existing plan window in
place (it may shift in time by a small amount) while
expanding it.

As well as being a good model for software maintainab
ity and reuse, the Spike Plan Window Scheduler meets
three success criteria for a long range planner listed abo
It generates a plan which leads toefficient schedules by
assigning plan windows which are optimized for individua
observations. The long range plan isstable by retaining
existing plan windows or modifying them only slightly
from plan to plan, and by only replanning those whose co
straint windows have altered radically. The long range pl
is mutable as new observations may be planned or existi
ones replanned without affecting the bulk of the plan.

The SIRTF Mission

The SIRTF mission has much in common with that of HS
Like the Hubble, it will be a an orbiting “space telescope
that will mainly concentrate on fixed astronomical target
It too will allocate a smaller percentage of time to viewin
moving targets and targets of opportunity. As does HS
SIRTF operations will routinely give their observers a
indication of approximately when their observations shou
execute while allowing them to modify their observatio
specifications until fairly shortly before they are actuall
scheduled to execute. For both missions it is assumed t
all planned observationswill execute (as opposed to
ground-based observatories where many observations
simply dropped due to bad weather), so all observations
of basically equal priority. One of the primary goals of th
SIRTF mission is science efficiency. The combination o
these attributes points to SIRTF as a good mission to reu
the Spike Plan Window Scheduler in producing a stable y
flexible LRP.

The major difference between HST and SIRTF als
makes it a good candidate for the Plan Window Schedul
SIRTF will be placed in an “Earth trailing” (orbiting the
Sun, lagging behind the Earth) orbit as opposed to Hubbl
4          2nd NASA International Workshop on Planning and Scheduling for Space
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“Low Earth” orbit. Thus, typical observing windows for
SIRTF targets will be much less affected by Earth light and
Earth occultations and will be much longer in duration.
Some SIRTF targets will be observable year-round, with
most others observable for months or weeks at a time. Of
course, there will be additional constraints placed on many
observations that will narrow the observing windows some-
what, but in general baseline windows for SIRTF will be
significantly larger than for HST. This underconstrained
problem argues for fairly large plan windows to guide a
short term scheduler.

There is one major difference between HST and SIRTF,
though, that seriously complicates the generation of a long
range plan using the plan windows concept. HST has sev-
eral scientific instruments, most of which can be run in par-
allel, so that for instance a wide-field image of a target can
be executed at the same time as a spectrograph of the same
target. This is not the case for SIRTF which will have three
science instruments -- IRS, IRAC, MIPS -- which must be
run sequentially. In addition, all of its instruments are cryo-
cooled and it will cost a reasonable amount of time and
some of the fixed supply of cryogen every time there is a
change over from one instrument to another. These require-
ments argue that SIRTF observations be planned to “instru-
ment campaigns” where only observations using a certain
instrument be scheduled for days or even weeks at a time.
In fact, this is a design requirement for the SIRTF mission.
But on the face of it seems to be at odds with the plan win-
dows concept which allows and encourages plan windows
for observations to overlap, only optimizing the extent and
number that overlap to resource limits.

We have been able to address this concern by introducing
the concept ofinstrument windows to implement instru-
ment campaigns. Instrument windows are defined to be dis-
crete, but adjoining, subintervals of the nominal planning
interval.The Spike Plan Window Scheduler has been
extended to schedule plan windows and instrument win-
dows in concert.

The Spike SIRTF Plan Window/Instrument
Window Scheduler

A prototype implementation of the Spike SIRTF Plan Win-
dow/Instrument Window Scheduler has been completed
and work is in progress to refine the prototype into an oper-
ational system before the planned SIRTF launch in Decem-
ber, 2001. A major design goal of this long range planning
system is to reuse much of the existing Spike code and class
hierarchy. To this date no existing Spike code has been
rewritten. All enhancements necessary for SIRTF have been
achieved by specializing Spike base classes and methods as
well as writing some new code. Objects have been added to
model SIRTF’s resources and new planning criteria have
been added to supplement some which have been reused
from HST. New scheduling steps have been added to the
Scheduling module, which we will describe in some detail
shortly.

The main technical hurdle to be overcome in the design
of the SIRTF long range planner was the issue of concurrent
scheduling of plan windows and instrument windows. The
former are by nature non-exclusive, while the latter must be

exclusive. We can schedule multiple, overlapping plan wi
dows “within” an instrument window as long as those pla
windows are only for observations which require the sam
scientific instrument. In fact, we allow plan windows for a
observation to schedule in multiple instrument windows
long as those instrument windows are designated for t
same instrument.

For example, suppose we have an observation which w
use the Infrared Array Camera (IRAC) and which has rel
tively unrestricted constraint windows. The nominal dura
tion of plan windows for SIRTF will be 40 days to cover th
natural viewing cycle for most observations (the majorit
will be observable for 40 days every six months). Even
there are two-week instrument campaigns for MIPS a
IRS intervening between IRAC campaigns, a 40-day pl
window for an IRAC observation could easily intersect tw
IRAC campaigns, while “skipping” the four-week interva
between.

We considered two approaches to achieving this sched
ing problem:

Approach I, plan windows first.

1. Generate plan windows for all observation first.

2. Assign instrument windows to areas where groupings o
plan windows for like instrument windows occur.

3. Repair plan window assignments to segregate assignme
by instrument window and to balance resources.

Approach II, instrument windows first.

1. Generate instrument windows to some idealized model
based on projected resource usage and other criteria.

2. Assign plan windows to the best instrument window(s)
based on scoring of planning criteria.

3. Repair plan window assignments for resource usage.

Given SIRTF observations’ generally large constraint win
dows, we quickly rejected Approach I. There was nothin
to drive plan window assignment, and thus just about an
thing could go anywhere. Segregating by instrument wi
dow then becomes a huge problem.

Approach II was chosen, with some refinements. Befo
discussing these, certain other attributes of SIRTF sched
ing should be noted. First of all, it is anticipated that a sig
nificant fraction -- maybe 10% -- of observations may b
classified as needingabsolute timescheduling. We con-
sider those observations that must schedule in no more t
a one-day window to be an absolute time event. Second
there is a preferred ordering of instrument campaigns f
SIRTF instruments in order to best utilize resources. T
existence of absolute time observations helps enable
refined Approach IIa; instrument campaign ordering mak
it more interesting.

Approach IIa, absolute time observations first.

1. Schedule plan windows for all absolute time observation
These plan windows will by definition be small, since the
constraint windows are small. As each absolute time
2nd NASA International Workshop on Planning and Scheduling for Space          5
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observation is planned, create an instrument window
“around it” such that this instrument window is somewhat
larger than the plan window, but must not intersect unlike
instrument windows. If an instrument window already
exists where an observation needs to go, either it will be a
window matching the observation’s instrument or it will
not. If it matches the plan window can be scheduled in that
window. If it doesn’t match, a conflict is noted to be han-
dled later.

2. Generate instrument windows to fill in gaps between the
instrument windows generated in (1) based on projected
resource usage, desired instrument window size minima
and maxima, and the preferred window ordering criterion.

3. For all non-absolute time observations, sorted by most
highly constrained first, assign plan windows to the best
instrument window(s) generated in (2) based on scoring of
planning criteria. If a like instrument window does not
exist where a highly constrained observation needs to be
planned, a new instrument window may be generated by
shrinking an existing one or an existing instrument win-
dow may be extended to accommodate the observation. In
any case, instrument windows may not be modified so as
to “orphan” an interval that is needed by an absolute time
observation. Other,relative time observations may be
replanned in a different instrument window if necessary.
During this process instrument window size and ordering
are maintained as much as possible.

4. Repair plan window and instrument window assignments
for resource usage and other imbalances not handled in (3).

Approach IIa has been implemented by reusing much
code from the HST Plan Window Scheduler and by defining
four new Scheduling Steps, corresponding to (1-4) above:
ABSOLUTE-TIME, INSTRUMENT-CAMPAIGN, RELA-
TIVE-TIME, and REPAIR. Let’s consider the INSTRU-
MENT-CAMPAIGN in some more detail.

Planning Within a Scheduling Problem

In the INSTRUMENT-CAMPAIGN step we are faced with
the following initial conditions: A set of assigned instru-
ment windows with gaps in between them. We would like
to achieve a state where all the gaps are filled with new
(empty, in the sense that no plan windows are assigned to
them yet) instrument windows that are of some optimal size
and ordering. Basically we have a problem that is amenable
to classical AI planning approaches. The domain is highly
constrained and there are clear goals that can be achieved
by applying a sequence of operators to a defined world
state.

There are a number of approaches that could be consid-
ered for implementing the Instrument Campaign Planner,
however, most of them are overkill. Consider the gap-filling
problem. Do we generate N instrument windows of length
M to fill the gap, or X windows of length Y, and so on? For
large gaps there are many possible assignments that satisfy
the instrument window ordering problem. On the other
hand, we are in general trying to generate as large instru-

ment windows as possible within some bounds. This cu
the search space a good deal.

A more important consideration is that at this point in ou
overall planning and scheduling problem (instrument win
dows + plan windows for all observations) it isn’t importan
to try to get an optimal but computationally expensive sol
tion, as this solution will likely be undone in the RELA-
TIVE-TIME and REPAIR steps. We need a planner tha
gives us a quick solution which isgood enough.

The solution we provide is somewhat similar to tha
employed incase-basedplanners [Weld, 1994] in that we
use preexisting plans to synthesize a new plan. We dif
from case-based planning in that our domain is very we
defined and constrained so we don’t have the problem
matching and possibly modifying plans to use. Instead, w
take a brute-force approach of selecting all plans that ap
to the preconditions, scoring each one, and choosing
best.

We call these “pre-packaged” planswindow optimiza-
tion scripts. Window optimization scripts come in three
types: standalone, auxiliary, and compound. A standalo
script is one that is atomic. It performs one action that c
be scored as a solution to forwarding plan goals. An aux
iary script is atomic as well, but is always combined wit
other scripts to produce a script which can be scored.
compound script refers to a list of sub-scripts -- standalon
auxiliary, and compound -- which it calls to do its work.

An example of a gap-filling windows optimization scrip
is CREATE-WINDOWS-TO-RIGHT, a compound scrip
whose sub-scripts are CREATE-WINDOW-TO-RIGHT
MAKE-NEXT-WINDOW-CURRENT, CREATE-WIN-
DOWS-TO-RIGHT. During the INSTRUMENT-CAM-
PAIGN scheduling step, CREATE-WINDOWS-TO-
RIGHT is one of a number of scripts which is tested an
scored as a plan to fill the gaps between existing instrum
windows. At all times one instrument window is designate
as thecurrentwindow. CREATE-WINDOWS-TO-RIGHT
calls CREATE-WINDOW-TO-RIGHT to generate a new
window (to the right of the current). If this action is suc
cessful, MAKE-NEXT-WINDOW-CURRENT is called to
advance the current window pointer to the newly creat
window. Next, CREATE-WINDOWS-TO-RIGHT calls
itself recursively to continue the process of generating ne
windows to fill the gap. This plan is scored and if bette
than the current best is saved as best plan. Its effects
undone and the next applicable plan on the list is tested.

Another example of a windows optimization script i
EXTEND-BOTH-TO-MAX-LEFT-FIRST. It fills in a gap
by calling EXTEND-WINDOW-TO-MAX-ON-RIGHT,
MAKE-NEXT-WINDOW-CURRENT, and EXTEND-
WINDOW-TO-MAX-ON-LEFT. This and several other
scripts are sufficient to do a good job of filling gap
between instrument windows, as our choices of operator
relatively small. As testing has revealed a few cases that
not solved by existing scripts, several new ones have be
added.
6          2nd NASA International Workshop on Planning and Scheduling for Space
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Issues and Future Work

While the Plan Window Scheduler approach has proved to
be quite successful in generating long range plans for sev-
eral observatories, some issues keep it from being a fully
automated solution. Consider the issue of “Plan Window
Conflicts” which is being addressed for the HST LRP.

Inherent in the Plan Window Concept is the notion that
plan windows for a number of different observations will
overlap a given time period. Typically, plan windows for
any given observation will be fairly large (more than one
week in duration), and the overlaps tend to be somewhat
large as well. It is usually the case, then, that a feasible
ordering of observations can be found once a short term
schedule is constructed. Many observations can be placed
on one week’s short term schedule, and those that can’t can
be placed on a succeeding week’s.

When some observations are scheduled, though, occa-
sionally conflicts occur. That is, two or more observations
claim the same time slot on a short term schedule and the
conflict is irresolvable without manual work including
modification of the observation specifications. How do
these conflicts occur?

1. Sometimes the conflicts are due to observations which
have very tight constraint windows (a few hours) which
intersect. While this type of conflict derives from the
nature of the observations themselves, it is also the easiest
to detect beforehand. After detection, the conflict can be
reported so that one or more observations can be altered.

2. Some conflicts occur when observations have plan win-
dows which appear to have a good deal of scheduling flex-
ibility built in, but which in practice do not. The cause of
this is that the short term scheduler has knowledge of some
constraints which are either not known by the long range
planner, or which are only computed by the LRP in a sta-
tistical sense. A possible solution to this problem is to pro-
vide better communication between the short term
scheduler and the long range planner. In theory the LRP
could detect those observations that are “prone” to this
problem and call the short term scheduler to test schedule
them for possible conflicts.

3. The third type of conflict is even more difficult to detect. It
occurs when a number of observations have long plan win-
dows, but all of them terminate a short time into a given
week. Now suppose each of these observations is not
scheduled during the first few weeks of their plan win-
dows. This is a very common occurrence as there will be
higher priority observations to schedule whose plan win-
dows do end during a given week and thusmust be sched-
uled. If enough of the observations with long plan
windows are “ignored” on earlier weeks, they may all end
up being “must go” for the present week. But, if they all
need to schedule in the first part of the week, there may not
be enough time to schedule all of them. One possible solu-
tion to this problem is to detect groups of observations
whose constraint windows all end at the same time and
stagger plan window end times.

The Plan Window Conflict problem is one that affects
small percentage of observations, but it presents some in
esting problems which do not seem insoluble within th
plan window scheduling paradigm. Given the nature of th
observatory domain these problems might be avoided w
a solution of just short term scheduling on demand, but t
costs of this approach would far outweigh the benefits.

Open questions also remain as to how easy it will be
maintain a stable Instrument Campaign schedule for SIR
in a operational environment with observations changin
over time, new observations being planned, and unfores
events occurring. More work remains to be done on t
REPAIR phase of the planner. We will get a better idea
how the Plan Window/Instrument Window Scheduler wi
perform as we conduct more realistic simulations, howev
some modifications will be inevitable during the life of the
mission. In any case, the Plan Window concept has be
shown to provide a good deal of flexibility -- both for
scheduling observations, and for handling different pla
ning challenges.

Summary

We have looked at a domain -- long range planning f
orbiting observatories -- where planning may be best ha
dled by methods other than the classical goals/operat
paradigm of AI. This is still a planning problem in a more
generic sense of creating a template so that activities c
later be sequenced efficiently and resources managed ef
tively over time.

The plan window scheduling methodology we describ
will continue to have applicability for observatory long
range planning, and should be considered for other doma
where similar attributes are found: most activities a
loosely constrained and coupled, need to be rough
planned well in advance, but may not be completely we
defined until they are ready to schedule.
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Introduction

 

The paper 

 

Generating a Long Range Plan for a New Class
of Astronomical Observatories

 

 by Laurence Kramer, de-
scribes how scheduling for the Hubble Space Telescope
(HST) is broken up into two phases:

1.

 

Long Range Planning

 

 (LRP) – where the observations
for an extended period (a year or more) are each
assigned to plan windows of typically 4 to 8 weeks
duration.

2.

 

Short Term Scheduling 

 

– where a detailed schedule of
observations is constructed for a single impending
week.

The paper goes on to describe a proposal for adapting this
same architecture to the Space Infrared Telescope Facility
(SIRTF). For SIRTF, observations are typically much less
constrained than for HST. However, resource management is
much more critical, because there is a finite supply of cryo-
gen for cooling the instruments, and switching instruments
uses both coolant and time. As a result, the author proposes
to construct explicit instrument windows during the LRP
process and to use those windows to help assign plan win-
dows for observations.

To start, I want to comment briefly on the general nature of
observation scheduling problems. Second, I wish to com-
ment on the issue of maintaining both flexibility and stability
in a schedule, and offer a different way of thinking about sta-
bility. Finally, I wish to comment on the proposed use of in-
strument windows for SIRTF and suggest an alternative.

 

Observation Scheduling

 

There is a great deal of similarity between the scheduling
problem for HST and SIRTF, and observation scheduling
problems for other facilities such as automated ground-
based observatories [5], airborne observatories (KAO and
SOFIA) [6], and earth observing satellites (EOS). For all of
these observatories, investigators submit specific observing
proposals, usually well in advance. Proposals are then re-
viewed and ranked in some fashion. The result is a large col-
lection of requested observations with constraints on date,
time, sky condition, and other operational parameters. The

challenge is to maximize scientific return, subject to the con-
straints. The problem is that for all of these facilities there
are significant sources of operational uncertainty – weather
conditions for ground-based observatories and EOS, water
vapor conditions and air traffic delays for KAO and SOFIA,
and uncertainty due to slewing, target acquisition, and obser-
vation duration.

Are these planning problems or scheduling problems? Both
and neither. On the one hand, there are usually more obser-
vations than can be performed in a given period, so the task
involves 

 

choosing

 

 some subset of the available observations.
Choosing the operations to perform sounds like planning,
but the choices are simple ones; the choice of one operation
does not lead to other choices (as with preconditions). In ad-
dition, these problems involve rich temporal constraints and
reasoning about continuous resources. While planning prob-
lems can include these characteristics, the solution tech-
niques are not robust or mature (see [11] for discussion of
this issue).

In contrast, scheduling problems often involve temporal
constraints between tasks, continuous resources, and optimi-
zation. As a result, the constraint-based representation com-
monly used for scheduling problems is particularly relevant.
However, there is little relationship between the common
job shop scheduling problem and observation scheduling
problems. In particular, there is no parallelism in observa-
tion scheduling – only one target can be observed at a time.
The optimization criteria is also much different.

In sum, observation scheduling is a rather different ani-
mal, and neither the scheduling or the planning communities
have a well developed set of tools for addressing this class of
problems.

 

Flexibility and Stability

 

In the paper, Kramer argues that successful scheduling sys-
tems for HST and SIRTF need to generate schedules that are
both flexible and stable. Flexibility is needed because of un-
certainty – observation requests change, orbits are uncertain,
and instrument behavior and performance are not entirely
predictable. Stability is needed because astronomers have
expectations about when their observations will be per-
formed and they must make commitments based on those
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expectations. As a result, changes to the observing schedule
must be made with care.

 

1

 

The properties of flexibility and stability are fundamentally
at odds with one another. Flexibility is obtained by delaying
commitment – that is, scheduling decisions are not locked in
until the last moment. In contrast, stability is guaranteed by
early commitment – locking down decisions about the date
and time of each observation. In Spike, this trade-off is ac-
complished by:

1. Early partial commitment to a 4-8 week range of dates
for each observation

2. Delaying commitment on the exact dates and times for
individual observations until shortly before execution

From a theoretical point of view, the early partial commit-
ment done in LRP is somewhat different than operations
usually performed in constraint-based scheduling. To see
this, consider the observation scheduling problem as a con-
strained optimization problem in which there are variables
representing the possible start times for each observation.
(For each observation, the value of this variable will be a set
of time intervals corresponding to the intervals in which the
observation is possible.) By constraint propagation tech-
niques such as arc-consistency and edge finding [4, 9], we
can narrow down these intervals by virtue of other con-
straints on the observation, constraints on telescope opera-
tion, and time constraints between observations (see [7] for
details). But for HST and SIRTF, this can still leave a wide
range of possible start times for each observation. The pur-
pose of the LRP process for HST and SIRTF is to narrow
down these ranges so that 1) the remaining short-term sched-
uling problem is somewhat more constrained and hence eas-
ier to solve, and 2) astronomers can be given some idea
when their observations are likely to be performed. When
viewed as constraint optimization, the LRP is making com-
mitments to subsets of the possible values for observation
start time variables, instead of making commitments to indi-
vidual values for those variables.

Schedule stability is enforced, because on subsequent re-
scheduling the LRP will not rescind these interval choices
(except for observations that have been modified). In effect,
the LRP refuses to backtrack on window narrowing choices
that were made at an earlier date. This approach certainly
guarantees the desired schedule stability, but could be prob-
lematic in other more highly constrained scheduling do-
mains. The trouble is that there is no guarantee that a
solution will exist to the resulting (more constrained) sched-
uling problem. In fact, scheduling systems typically need to
search through many alternative choices for variable values
in order to find acceptable schedules. The LRP usually gets
away with this kind of irrevocable commitment, because the

HST and SIRTF problems are generally very undercon-
strained.

For a domain in which this kind of commitment will not
always work, how can we preserve a reasonable level of
schedule stability? I contend that stability is an optimization
criterion in rescheduling – there is some penalty associated
with delaying an observation beyond its original predicted
window, and the extent of the delay is presumably correlated
to the magnitude of the penalty. (There is no penalty for per-
forming an observation early, but doing so might displace
another observation, which could result in a penalty.) Using
this optimization criterion, a scheduler would prefer sched-
ules in which all observations take place prior to the end of
their predicted window, but alternatives could be considered
and evaluated. Note that treating schedule stability as an op-
timization criterion, and allowing window revision does not
require that we reschedule from scratch each time. It is still
possible, and rational, to reschedule using local search meth-
ods, treating the previous schedule as the seed for the local
search.

Of course, the LRP could use this approach when re-
scheduling. It would allow greater flexibility in reschedul-
ing, and could allow more principled recovery from larger
scale failures such as equipment problems aboard the tele-
scope or unusual events that preempt existing observations.

 

Instrument Windows

 

For SIRTF, observations are typically much less constrained
than for HST. This means bigger initial time windows. How-
ever, resource management is much more critical, because
there is a finite supply of cryogen for cooling the instru-
ments, and switching instruments uses both coolant and
time. In the paper, the authors propose to 1) assign time win-
dows for tasks with very small constraint windows, 2) build
explicit instrument windows around those time windows,
and 3) assign time windows for the remaining observations,
splitting or adjusting instrument windows if necessary to ac-
commodate observations.

I am not convinced that the construction of instrument
windows is the best approach to this problem, because the
instrument windows must be chosen, then continually re-
vised to accommodate additional observations. In the final
schedule, instrument windows are merely consequences of
the choices of observation windows. In other words, it is the
observation constraints that determine the best set of instru-
ment windows, not the other way around. The paper argues
that the observations are so under constrained that instru-
ment windows are needed to help constrain the assignment
of observation windows. If this were so, there would be no
need to revise the initial set of observation windows to ac-
commodate the remaining tasks.

Switching instruments on SIRTF is a classic example of
a 

 

setup step

 

 common to many job shop scheduling problems.
For example, consider a milling machine on a factory floor.
Changing the bit or the clamping arrangement on the table is
a time consuming and hence costly operation. If the previous
task uses the same bit and the same clamping arrangement,
no cost is incurred. Thus, there is considerable incentive to

 

1. The need for both flexibility and stability is not unique to obser-
vation scheduling; flexibility and stability are required in any
domain where there is significant uncertainty, but commitments
must be made early. This is more common than not in real world
scheduling problems.
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schedule tasks in such a way as to minimize the number and
cost of such setup steps. In general, simple search techniques
like A

 

*

 

, Limited Discrepancy Search [8], and HBSS [3]
should work quite well. To see how this might work for
SIRTF, consider the partial schedule shown in Figure 1.

Initially there are several observations in the schedule
that can only be performed at specific times. For each obser-
vation, the required instrument is indicated above the obser-
vation. Initially, we have a lower bound on the instrument
change cost for this schedule. Somewhere between 

 

O

 

1

 

 and

 

O

 

2

 

, we will at least need to change from instrument 

 

I

 

3

 

 to 

 

I

 

1

 

.
Similar transitions must occur between the other observa-
tions. If we let 

 

C

 

ij

 

 be the cost of changing from instrument 

 

i

 

to 

 

j

 

, the cost for this partial schedule is 

 

C

 

31

 

+C

 

12

 

+C

 

21

 

. 
Now consider an observation 

 

O

 

5

 

 that has a much larger
range of possible start times. Given the existing schedule,
there are three places we could put this observation: before

 

O

 

2

 

, between 

 

O

 

2

 

 and 

 

O

 

3

 

, and after 

 

O

 

3

 

. If 

 

O

 

5

 

 occurs before 

 

O

 

2

 

,
there is no additional instrument change cost; only the tran-
sition from 

 

I

 

3

 

 to 

 

I

 

1

 

 is required. If 

 

O

 

5

 

 occurs between 

 

O

 

2

 

 and

 

O

 

3

 

, the cost increases because we must now transition from
instrument 

 

I

 

1

 

 to 

 

I

 

3

 

, then back to instrument 

 

I

 

2

 

. The results are
similar if 

 

O

 

5

 

 occurs after 

 

O

 

3

 

. For subsequent observations a
bit more reasoning is required, because we need to consider
the possible ordering relative to flexible observations like

 

O

 

5

 

. However, the general idea is to search the space of rela-
tive observation orderings, in order to minimize instrument
change cost. The resulting best ordering will dictate the best
set of instrument windows. 

In doing this search, one could also make use of probabilistic
instrument usage profiles similar to those used by Sadeh [10]
and Fox [1, 2]. In Figure 2, I have illustrated a simple profile
for instrument 

 

I

 

2

 

 from the example in Figure 1.

For 

 

O

 

3

 

, there is no time flexibility so 

 

I

 

2

 

 is used with probabil-
ity 1 throughout the interval. For 

 

O

 

6

 

 there is flexibility, so the
probability mass is distributed in a trapezoid. A composite
usage profile for an instrument is constructed by summing
up the profiles for all observations using that instrument.
These profiles provide heuristic guidance on the best win-
dows to assign for a task – namely those for which there is
high demand for the instrument and lower demand for other
instruments.

In summary, I believe that for SIRTF, a more systematic
search of the space of possible observation windows is prac-
tical, and that these observation windows will dictate the re-
sulting instrument windows.
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Abstract
We describe a methodology for representing and
optimizing user preferences on plans. Our approach
differs from previous work on plan optimization in that
we employ a generalization of commonly occurring
plan quality metrics, providing an expressive
preference language. We introduce a domain
independent algorithm for incrementally improving the
quality of feasible plans with respect to preferences
described in this language. Finally, we show that plan
quality can be significantly increased with very little
modeling effort for the domain.

Introduction

For many planning problems, quality as well as
feasibility must be considered while generating a plan.
There may be many undesirable, yet feasible solutions
that satisfy the goals. In addition, strict feasibility
constraints may be too weak for most problems, but
necessary for completeness. For example, while it may
be physically possible to completely drain a battery,
reasons of risk and longevity will make it preferable to
maintain a certain level of charge. However, this
preferred charge level, if encoded as a hard constraint,
would preclude solutions where a full battery drain
was necessary. We build on the traditional
representation of discrete hard constraints and
mandatory goals to include continuous soft constraints
(i.e., preferences) and optional goals. In other words,
we extend the notion of what must be accomplished
(and how) to what should be accomplished (and how).
In this way, the user can specify which feasible
solutions are more desirable, establishing a basis for
automatically generating high quality plans.

In many NASA domains, the user can have a
complicated definition of plan quality. For example,
scientists typically would like to complete as many
experiments as possible within given windows of
opportunity. Other users, such as engineers, might
have a preference for fewer power switches of a
spacecraft instrument in order to extend the life of the
instrument. Certain system states may be more
desirable than other states. For example, extending an
arm of a rover might leave the rover unstable, making
it preferable to keep the arm stowed when not in use.

Some timing constraints may be flexible but also have
a preferred time. For example, a calibration may be
most useful immediately before an experiment, but
still have some utility up to five minutes earlier. We
present a general representation of plan quality that is
capable of encoding a wide range of preferences
including the ones just described.

We implement a representation of plan quality and
an optimization algorithm in the ASPEN planning and
scheduling system [1, 2]. During iterative
optimization, low scoring preferences are detected and
addressed individually until the maximum score is
attained, or a user-defined time limit has been
exceeded. A preference is a quality metric for a plan
variable, and can be improved by making certain
modifications to the plan. The most common plan
modifications include moving an activity, adding a
new instance of an activity, and deleting an activity.
For each preference, a domain-independent
improvement expert automatically generates
modifications that could potentially improve the
preference score. This is a generalization of the
iterative repair technique [3, 4] used to resolve
violations of hard constraints.

The iterative optimization algorithm has many of the
same desirable properties as iterative repair. Both
algorithms can be invoked at any time on any plan,
making them more amenable to mixed-initiative
planning. Repairing or improving existing plans
enables fast turn-around times when small changes
create conflicts or degrade plan quality. Changes may
occur from manual modifications or from
automatically detecting unexpected differences during
execution. Further discussions with applications to
spacecraft commanding can be found in [5].

The ASPEN Planning Model

In ASPEN, we have adopted a planning model with an
explicit representation of constraints for time,
resources and states [6]. Plan operators, called
activities, have a set of local variables including a start
time and duration. Activities may have a set of
temporal constraint variables, each specifying a
minimum and maximum separation between two
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activities in the plan. Activities also share a number of
global resources or state variables. Local constraint
variables may be defined in an activity specifying the
required value of a resource or state variable for the
activity. The combined effects of the activities define
the time-varying profiles (i.e., timelines) for the values
of the resources and state variables. Global constraints
can be defined for each timeline, restricting its set of
legal values. For resources, these are capacity
constraints. For state variables, the set of legal states
and transitions can be specified. The ASPEN planning
model also includes a representation for activity
hierarchies. Activities can have a disjunctive set of
decompositions, each of which expands the activity
into different set of sub-activities. A local variable
represents the currently selected decomposition.
Arbitrary functional relationships can be expressed
between any of the variables in the activities. This
allows ASPEN to make external calls to special
reasoning modules for calculating plan values, if
necessary.

Finally, ASPEN has an explicit representation of
mandatory and optional goals. Goals are simply
activity specifications that do not immediately appear
in the plan. A mandatory goal is a conflict until the
activity has been inserted into the plan (i.e., the goal is
satisfied). Optional goals are not considered conflicts
when not satisfied but instead degrade plan quality.

Representing Plan Quality

We define preferences as quality metrics for variables
in complete plans. Preferences provide a mechanism
for specifying which plan variables are important to
plan quality. Certain values of these variables are
preferred over others, without regard for legality. We
define a set of preference classes that directly
corresponds to the set of plan variable classes.

Preference Variables
To better understand what types of preferences are
included in our semantics, we must describe the types
of plan variables that can contribute to plan quality.
There are five basic types: local activity variable,
activity/goal count, resource/state variable,
resource/state change count, state duration.

An activity variable preference indicates a ranking
for the values of a local variable in an activity instance
in the plan. Local activity variables include domain-
specific variables as well as internal variables for start
time, end time, duration, resource usage, temporal
distance from other activities, and selected
decomposition. Typically, a preference is made for
variables with a particular name defined in a particular

type of activity. For example, minimizing tardiness in
[7, 8] is a preference on the end times of activities that
fulfill factory orders. Minimizing work in process
(WIP) is a preference on the distance between the
order request and order fulfillment activities. Other
preferences can score the plan based on the number of
existing activities of specific types (i.e., activity
count). Or, one can make a general preference for
satisfying more of the optional goals. A
preference can also be made for certain values of a
global resource or state variable. A resource/state
variable preference ranks the set of resource/state
values that exist within the planning horizon. For
example, a preference can be made for maximizing the
minimum value of a battery over time. Other
preferences can score the plan based on the number
changes occurring on a resource/state variable (i.e.,
resource/state change count). This type of preference
could be used to limit the number of power spikes on
the battery. Finally, a preference can be made on the
duration of a particular state on a state variable.
Pointing a spacecraft antenna towards earth, for
example, is preferred when the spacecraft is not
constrained to any other state.

Mapping to Quality Metrics
A preference is a mapping from a plan variable to a

   

activity
end time

score

lower
bound

1

0

upper
bound

6hrs 7hrs
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center
value

1

0 8min 12min10min

Figure 1: a) Mapping the end time of an activity to a score. This
implements a preference for minimizing tardiness of an activity.
The deadline is at the sixth hour and the score decreases to zero
one hour after the deadline. b) Mapping the distance between
two activities to a score centered on a given value. This
implements a preference for maintaining a 10 minute separation
with a ±2 minute tolerance.

a)

b)
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quality metric (i.e., score) in the interval [0,1] (see
Figure 1). Specifically, a preference indicates whether
the score is monotonically increasing or decreasing
with respect to the plan variable within certain bounds.
The user can also specify that the score increases as
the difference with a given fixed value decreases. In
other words, the high score is centered on a value
selected from the domain of the variable. From this
high-level specification, mapping functions are
generated that take preference variables as arguments
and return real-valued scores.

Each preference includes an upper and lower bound
to indicate the range of the variable for which the
score increases or decreases. Any values outside this
range produce a score of either zero or one. For
example, anything over 90% battery charge may be
indistinguishable in terms of quality. Therefore, a
preference can be defined as increasing with minimum
charge and reaching a maximum score at 90% charge.
Each preference also includes a weight for specifying
the relative importance of the preference to overall
plan quality. The score of a plan is computed as the
weighted average of scores for plan variables with
preferences.

An aggregate preference is defined for many plan
variables, and can either score each variable
independently, or score the result of applying a
function to the variables. If the preference scores each
variable, then the scores are weighted equally and
averaged. The built-in functions that can be used in
aggregate preferences include average, sum,
minimum, and maximum. These functions constitute
the set of functions most commonly observed in
preferences from various domains. For example,
minimizing makespan is a preference on the maximum
end time of all activities in the schedule. The specified
function is computed for the current set of plan
variables, and the result is mapped to a score for the
preference.

Improving Plan Quality

Preferences allow us to define quality metrics for
evaluating feasible plans and making quantitative
distinctions between different plans. The next step is
to use these preferences to generate high quality plans.

Local Improvement Experts
In addition to establishing quality metrics, preferences
can provide insight into how to improve plan quality.
We define a domain-independent improvement expert
for each class of preference to aid in optimization (see
Figure 2). The expert uses the preference specification
to find plan modifications that will improve the score

for the given preference and current plan. In other
words, an expert is a link between changes in the plan
and the change in quality. For example, if less
resource usage were preferred, expert improvements
would include deleting an activity that is currently
using the resource. It is a local expert, however, and
does not guarantee an increase in overall plan quality.
Improvement experts provide a framework for
optimization algorithms, defining the search space of
possible improvements. We define a separate class of
improvement expert for each class of preference.

Local activity variable expert. One class of expert is
used for improving preferences on local activity
variables. The most obvious modification for
improving this preference is to change the value of the
local variable. The expert considers variables that
contribute to the low score. For example, only the end
time of activity a2 in Figure 2 can be changed to
improve the score for this preference. If score is a
decreasing function of the variable, then making an
improvement requires assigning a value less than its
current value. Similar improvements exist for
increasing functions. In cases where the variable is the
start or end time of the activity, assigning a value
implies moving the activity to earlier or later times. An
expert might create activities with high scoring values
or delete activities with low scoring values on a
variable.

Activity/goal count expert. A different class of
improvement expert is used preferences on the number

Preference:
  less min battery level
Expert:
  who? a3, a4, typeof(a5)
  what? delete, create
  where? < t2 or > t3
  …

a1

a4 a5a3

a2

battery
level

Preference:
  earlier end time
Expert:
  who? a2
  what? move, delete, …
  where? < t3
  …

t2 t3t1t0 t4

time

Figure 2: Local improvement experts.
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of activities/goals. When the preference is for more
occurrences of a goal/activity, creating new activities
is the only beneficial modification. When the
preference is for fewer occurrences, deleting existing
activities is the only improvement.

Resource/state variable expert. Another class of
expert improves preference scores for the values of
resources or state variables. Only activities that use the
resource or state variable are considered. For a high
resource preference, the expert selects activities that
increase the resource when adding and activities that
decrease the resource when deleting. When moving, if
the preference is for a higher minimum resource value,
activities that decrease the resource during this time
can be moved away from the minimum value. In
Figure 2, activities a3 and a4 both contribute to the
low minimum battery level. Similar cases exist for
lower maximum, higher maximum, and lower
minimum resource values.

Resource/state change count expert. A simpler class
of expert is used for improving scores of preferences
on the number of times a resource or state variable
changes over time. Adding activities that use the
resource or state variable will increase the number of
changes. Deleting will decrease the number of
changes.

State duration expert. The last class of improvement
expert works on state duration preferences. Activities
that change the state variable can be created, deleted,
or moved in order to change the amount of time spent
in a particular state. When the preference is for a
longer duration, activities that change to the specified
state can be created at times when the variable is in a
different state. Conversely, when the preference is for
a shorter duration, activities that change to any other
state can be created at times when the variable is in the
specified state. Similar reasoning is used when
deleting or moving activities.

Monotonic Preference Assumption
In order to make improvement calculations tractable,
we make a monotonic preference assumption,
requiring each mapping from plan variable to quality
metric to either be consistently increasing or
decreasing within a given range of the variable. For
preferences centered on a value, the score must
increase for values less than the specified center value,
and decrease for values greater than the center value.
This assumption allows the problem to be restated as
simply identifying modifications that increase or
decrease the current values of plan variables
participating in preferences. For example, if a variable
with integer domain [1,10] and current value 4 has a

decreasing preference, then only values in the range
[1,3] will increase the score for this preference.

Iterative Optimization
The full set of potential plan improvements can be
quite large. Once the automated expert has identified
this set, we search for more optimal plans by
iteratively selecting and making improvements (see
Figure 3). We call this technique iterative optimization
because of its similarity to iterative repair. The
iterative optimization algorithm first selects a
preference from the list of sub-optimal (i.e., score < 1)
preferences. Typical heuristics for this decision
include selecting a preference with one of the lowest
scores or one with the most potential gain (weight * (1
– score)).

The algorithm must then decide which type of
modification to perform for the selected preference,
based on the local expert. After making a local
improvement, the resulting plan may not be optimal or
even improved. The iterative optimization algorithm
continues by selecting another preference, and
repeating the improvement process. After each
improvement, if the current score exceeds the best
score and the plan is feasible, the current plan is saved.
The algorithm halts when the maximum score is
attained, or a specified time limit is reached. If an
optimal plan was not found, the saved plan with the
best score is returned.

When making modifications during iterative
optimization, adhering to plan constraints may be too
restrictive, precluding modifications necessary for
improving quality. Iterative optimization algorithm
may create conflicts while searching for an optimal
plan. Because it is unknown how the plan will change

Iterative Optimize (T)
Let P = Pbest  = current plan
Let S = Sbest  = current score
While (S <1 and time < T)

If conflicts exist, Then repair(T-time)
Let Q = set of preferences with sub-optimal score
q = choose(Q)
M = Eq(P) // get the set of modifications
m = choose(M)
P = m(P) // apply the chosen modification
S = score(P)
If (S > Sbest) // save if best-so-far

Sbest = S
Pbest = P

Return Pbest

Figure 3: The ASPEN optimization algorithm. Eq(P) returns
the set of modifications for plan P calculated by the expert E
for improving preference q.
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to achieve feasibility, we do not  define quality for
infeasible plans. Iterative repair algorithm is invoked
to restore feasibility when optimization yields an
infeasible schedule.

The iterative optimization algorithm does not
perform strict hill-climbing. Decreasing score suggests
that a subset of the preferences represent competing
objectives. We only attempt to increase the score of a
single preference by stochastically choosing one
potential improvement rather than optimizing the
preference. We would expect competing preferences
with a large disparity to reach a compromise rather
than thrash between a high score for one and a low
score for the other.

Continuous Improvements
During execution we may notice differences between
actual and expected values for activities or resources.
These differences may violate hard constraints or
degrade plan quality. The CASPER system [9] was
developed to continuously initiate and monitor the
execution of an ASPEN plan, updating the plan when
necessary. As the result of a plan update, CASPER
uses the iterative algorithms to fix new conflicts and
improve preference scores. In this way, CASPER
provides continuous planning and optimization during
the course of execution.

Case Study

New Millennium Earth Observer 1 (EO-1) is an earth
imaging satellite featuring an advanced multi-spectral
imaging device. EO-1 mission operations consists of
managing spacecraft operability constraints (power,
thermal, pointing, buffers, consumables, telecomm,
etc.) and science goals (imaging surface targets within
specific observation constraints). One interesting
constraint involves the Solar Array Drive (SAD)
which keeps the solar arrays facing the sun. For a few
minutes before and during each data-take, the SAD
must be locked to avoid spacecraft jitter, which can
corrupt data. The EO-1 model consists of 14 resources,
10 state variables and total of 38 different activity
types.

The EO-1 model includes preferences for (see
Figure 4): more science goals, more time with the

SAD tracking the sun, fewer changes of SAD state,
and less deviation from the preferred separation of
data-take and SAD locking activities. The last
preference has a high score centered on a value
because if the settling time is too small there will be
too much jitter, but if the separation is too large the
solar array power output will suffer.

Optimization begins with no optional goals satisfied
and no violated constraints. In order to increase plan
quality, a goal might be added to the plan. Because
this activity has many requirements, constraint
violations are immediately identified and addressed.
After repairing all conflicts, optimization continues to
make improvements by either adding another goal or
working on another preference. Optimization and
repair continue until a time limit is reached, after
which the best saved plan is reloaded. Random EO-1
problems were run on a Sun Sparc Ultra 60 for five
minutes each. Resulting values for each preference
variable were averaged over the 100 problems.
Approximate “optimal” values were estimated
manually considering each preference individually.
Average values for all preference variables were
within 50% of the “optimal” value or better. This is
good considering many of the preferences represent
competing objectives.

Studies on other models were performed with
similar results, including the New Millennium ST-4
spacecraft, the Data-Chaser shuttle payload, and the
JPL Rocky-7 planetary rover [10].

Related Work

Much of the recent work in plan optimization has been
looking at ways to integrate linear programming (LP)
techniques with symbolic AI and constraint
propagation [11, 12, 13, 14]. While LP formulations
have the advantage of taking a global view of plan
quality, they can be difficult to develop and
computationally expensive to solve when including
representations for state, resource, and temporal
constraints. PYRRHUS [7] is a partial-order planner
that must evaluate the utility of partial-plans in order
to address optimization. To compute the upper bound
on utility of partial plans, they make the restrictive
assumption that overall quality does not decrease

Figure 4: Preference specifications for the EO-1 model.

Prefer linearly more goal all total occurrences between 1 and 30 weighted 200
Prefer linearly more sad_sv total duration of tracking value
Prefer linearly less sad_sv total occurrences
Prefer linearly centered activity ali_data_take parameter sad_front_bound each
 value between 250 and 350
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when making refinements. Myers and Lee [15] view
the optimization problem as providing a set of
qualitatively different plans that can be refined by
human planners. The CABINS [8] system uses a
similar iterative optimization algorithm to improve
complete, sub-optimal schedules. Case-based
reasoning (CBR) is used to learn preferences from the
user’s evaluation of the plans. Finally, our approach is
a specialization of black-box optimization techniques.
The large search space of black-box optimization
makes both finding and applying the appropriate
technique prohibitively expensive.

Conclusions

We have described an approach to represent and
optimize quality metrics using generic preferences for
values of arbitrary variables in the plan. In our
approach, we efficiently compute the set of local
improvements for each preference independent of the
domain by restricting the representation to monotonic
functions for mapping plan values to quality metrics.
We have demonstrated the feasibility in a spacecraft
operations domain. More details can be found in [10].
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Summary

In an effort to address some deficiencies of automated
planning, the authors of “Using Generic Preferences to
Incrementally Improve Plan Quality”, develop and test a
method that allows the human planner to add preferences
and optional goals. As defined by the authors,
preferences are quality metrics for variables in completed
plans and provide the mechanism for specifying which
plan variables are important to plan quality.  The authors
claim this can dramatically increase plan quality with
very little modeling effort. The methodology is
developed as an extension to the Automated Scheduling
and Planning ENvironment (ASPEN) platform. This
platform develops plans based on discrete hard
constraints and mandatory goals and resolves conflicts
with an iterative repair algorithm. The resulting plans are
feasible but may not be acceptable because they do not
include what human planners call soft constraints and
optional goals. With the inclusion of these additional
considerations, the authors establish a basis for
automatically generating high quality plans.

The authors extend the ASPEN platform to
increase plan quality by the use of preference variables
and iterative optimization. The human planner chooses
the time period of the plan to be generated by ASPEN.
Hard constraints and mandatory goals are defined as well
as optional goals and preferred values of plan variables.
Mandatory goals are considered a conflict until the
activity that satisfies the goal has become part of the
plan.  Optional goals that are not satisfied degrade the
overall plan score. A plan score is calculated based on
the preferred value of specified variables (preference
variables). The iterative repair process, a standard part of
ASPEN, resolves hard constraints and unmet mandatory
goals, and iterative optimization, an extension to
ASPEN, strives to increase preference variable scores.
Those that are low scoring are identified and addressed
until a maximum score is attained. Moving activities in

time, reordering activities, etc., can increase scores.
Only the highest scoring plan is kept.

The authors describe five different types of plan
variable classes that contribute to plan quality. For each
of these basic plan variable classes, preferred values are
specified (plan variables with preferences or preference
variables) and real-valued scores are returned. The plan
score is computed as the weighted average of scores for
plan variables with preferences.  In this way, preferences
allow the user to evaluate feasible plans and make
quantitative distinctions between different plans. In order
to increase plan quality, the plan score must be increased.
This is done by iterative optimization, which represents a
series of improvements made by the improvement expert
algorithms. An improvement expert algorithm is
developed for each of the five different types of plan
variable classes and is invoked depending on the type of
preference variable that is low scoring. The improvement
experts iteratively select and make improvements, and
thereby search for more optimal plans. This is repeated
for all of the low scoring preference variables until the
best overall plan score is achieved or the specified time
has been reached.  Experimental results of this technique
are presented for the New Millennium ST-4, New
Millennium EO-1, Data Chaser, and Rocky-7 Mars
Rover.

Commentary

This paper presents an interesting alternative approach of
increasing plan quality by developing an extension to
ASPEN, a plan generating platform. According to the
authors, plan quality is increased in less time and with
less computer resources than without the extensions. It
does so by allowing the planner to specify soft
constraints (or preferences) and optional goals.

Throughout the development of this extension,
the authors make a point of working with mission
planners so that their extensions to ASPEN are “user
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friendly”.  This is a very important point and is so often
overlooked by software developers. In my experience the
easier the program/algorithm is to use, the more it gets
used and the more its tools are exploited. While other
programs/algorithms may offer better features, it is the
program/algorithm that is easiest to use and understand
that becomes a mainstay of a mission.

Because the trend is toward smaller mission
operations teams that are responsible for more tasks, it
follows that the mission planner is expected to have more
spacecraft mission expertise.  In the past this knowledge
may have been spread out among many planners. With
the use of the described extensions to ASPEN, much of
the required expertise to generate quality plans resides in
the algorithms themselves, and thereby alleviates some
of the burden of knowledge required by the now smaller
planning team. This is beneficial from a quality point of
view and a manpower point of view.

Some spacecraft mission concepts call for the
operations team to swell and shrink based on whether the
mission is in the cruise phase or data taking phase. Using
an ASPEN type plan generation platform with the
described extensions would be beneficial in that the
expertise would be “on line” and those coming back onto
the mission after an absence would be able to rely upon
it. I expect that once a platform such as this is in use,
mission planners will want to extend the capabilities of
the algorithms to include more and more automated
scheduling based on feedback from the spacecraft itself.
According to the authors, these types of extensions could
be accomplished.

If the intention of the authors is to have this
paper read by persons whose backgrounds do not include
much programming or AI experience, the addition of a
diagram or flowchart outlining the process/data flow
would be beneficial. This would make the relationships
of the different variables and processes easier to
understand.  I find myself getting quickly bogged down
in the descriptions of all the different variables and trying
to remember how they relate as I continue reading
through the paper.

As a mission planner, I would like to have a few
lines summarizing what decision processes/compromises
and quality checks went into the resulting plan.
Currently, the only information that a planner receives on
a resulting plan is a plan score. The authors state that in
some cases resulting plans are a compromise between
competing objectives and/or resource usage. No
indication of this is given to the human planner, and this
information may be very useful when combined with
information outside of the scope of the plan generating
algorithms. Quality issues are of major concern to any

mission planner and in order to feel confident about
using an automatically generated plan, some assurance
has to be given that the plan was checked against some
standard quality checklist.

From the point of view of a project leader, the
authors might consider addressing what type of mission
would benefit from this type of plan generation concept
and also may want to include a section outlining the
steps necessary to use this technique. Included in the
discussion would be topics such as 1) how the
complexity of the mission affects the development work
required to use this technique, 2) what type of personnel
background is required to prepare this technique for use,
and what type of background is needed to use this
technique on the mission, and 3) what savings are gained
by using this concept (i.e., operations teams size, time
required to generate plans automatically versus by
standard techniques, etc.). In order to help project costs
and time requirements, project leaders would also benefit
from a general discussion of the work needed to ready
this extended ASPEN platform for use on a mission.
Since some missions may already be planning to use the
ASPEN platform, the authors may want to point out that
much of the modeling work required would already be
done. On the other hand, missions not previously
considering the ASPEN platform may have more costs
associated with preparing the required modeling. The
discussion may include computer platform requirements,
time estimates to learn to use the extended ASPEN
platform, computer models for all the subsystems, etc.
This information can then be used to project costs and
allow the project leader to weigh them against projected
life cycle costs.

On a final note, I would find it very interesting
if the authors could extend their presentation of
experimental results to include not only results obtained
by using the presented extensions to ASPEN but also the
results obtained when normal planning tools for the
specific NASA missions are used.  This would give great
insight to the merits of using their technique by allowing
the reader to do a direct compare.

I find that this is a very interesting paper
presenting many ideas that are very useful in mission
operations. Although not a programmer, I can appreciate
the difficult task that the authors have undertaken and
understand how complicated it is to code for all the
different thought processes and decisions that go into
developing mission plans. I can also appreciate how hard
it is to write a paper that can explain their work in terms
that a person unfamiliar with programming and AI can
easily understand. They are to be commended for the
great work that they have done.
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Abstract
This paper describes two different approaches to Mission
Planning for earth observation missions: the approach
followed in European Space Agency’s ATOS-4 mission
planning system prototype, and the approach followed for
the operational Flight Operations Segment Mission Planning
System of the Envisat earth observation mission. Both
systems are introduced in their respective context, together
with the underlying goals and constraints that have driven
their development. Finally the re-usability of the ATOS-4
approach in the scope of an operational mission is
discussed.

Introduction   
The Advanced Technology Operations System (ATOS) of
the European Space Agency is a programme of studies into
the integration of advanced applications (including
knowledge based systems (KBS)) with ground systems for
the support of spacecraft mission operations. The
automated functions of present-day Mission Control
Systems (MCS) do not yet support all aspects of mission
operations. Continuous advances in the engineering
technology of the space segment make possible, and bring
demands for, ever-increasing complexity of mission goals
and products, and hence of the mission operations tasks. At
the same time there is continual pressure to reduce the
costs of mission operations. The ATOS studies were
conceived to tackle the problems of integrating advanced
applications into a MCS while promoting re-use of existing
applications, and to demonstrate the benefits to mission
operations of such an advanced MCS.
The Mission Planning problem has been addressed in the
scope of several of the ATOS studies, with the ambition of
leading to a better understanding of the use that could be
made of advanced applications in operational systems.
The sections below describe the approach developed in the
ATOS-4 project. They are followed by the description of
the operational Mission Planning System developed as part
of the Flight Operations Segment of the Envisat-1 mission,
which illustrates the differences between prototype and
operational systems.

ATOS-4 Mission Planning System

ATOS-4 Project
Automated mission planning systems are essential
components of an advanced MCS. The ATOS programme
addresses the problem of automating off-line mission
planning and on-line mission re-planning in several distinct
studies. ATOS-4 is one of them, which mainly addresses
the problem of developing a generic infrastructure for
automated mission planning systems integrated with the
other components of an advanced MCS, and demonstrates
it in the context of an earth observation mission, ERS-2.

Planning

Modelling

Diagnosis

Controlling
Monitoring

Re-planning requests

schedules

Model state

Telemetry

Procedure execution
request

Telecommand
History

Discrepancy
events

Model state

Model state

Telecommands

Telemetry

Telecommands
Model updates

Figure 1: ATOS-4 MCS

The ATOS-4 project has developed a prototype of an
Advanced Technology MCS which integrates and
automates the application functions of operations schedule
planning and generation, schedule execution and control,
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spacecraft health monitoring, real-time and predictive
model-based monitoring, anomaly diagnosis and recovery.
The project’s goal was to produce a logical model for an
integrated model-based MCS, and to provide the basic
components of standard libraries that can be used for the
development of such a system.
The ATOS-4 mission planning facility provides two main
modules fully integrated with the other components of the
MCS: an off-line planning system and an on-line re-
planning system. To address the need for reusability of
these components, both of them are delivered as part of a
C++ library.

Planning Interfaces
ATOS-4 is a prototype Mission Control System, which is
composed of five main components, as illustrated on the
diagram of Figure 1, which communicate with each other
through a communication infrastructure.
The Planning component, itself composed of the planner
and re-planner applications, and of a collection of data
editors, interacts in operations with only two other
components, the Modelling component and the Controlling
component. These interactions are further detailed below.

Planning and Modelling

The key feature of ATOS-4 is the use of an Object-
Oriented model of the mission to support the operations.
The mission model includes structural and behavioural
information about the mission, which are needed to support
predictive monitoring, i.e. simulation of the future state of
the mission, diagnosis, and mission planning. The
Modelling application provides services either to query the
static information included in the mission model, or to
trigger a simulation of specific states of the model, which
can in turn be queried.
The Mission Planning System holds its own representation
of the information included in the mission model, which it
populates by querying the model for the data needed. The
planner accesses the mission model to configure its activity
database from static information held in the model about
the mode transitions of the instruments. It uses model
simulation to derive resource profiles by extraction of
parameter values stored in the model, and get the starting
state of the mission from which planning of activities must
start.

Planning and Controlling
The end result of the planning process is a set of schedules,
which can be executed by a dedicated Controlling
application. Executable schedules consist of a partial
ordering of procedure execution requests, with attached
start time window, precondition, and expected result.
Several types of relationship between execution requests
are handled by the Controlling application, namely
precedence relationship and causal dependencies. In the

planning process, schedules are always generated as
increments to schedules that have been prepared in a
previous planning session, and chosen for execution. The
Controlling application monitors the execution of the
selected schedules, checking the validity of the
precondition of the execution request before releasing
them, and checking the expected result of the requests after
execution.  If the Controlling application is not able to
execute the schedule as expected, i.e. if the expected
precondition or effects of a procedure execution request is
not valid, or if the release of a procedure execution request
is delayed outside its start time window, a re-planning
session is started.
In a re-planning session, the Planning component receives
from the Controlling component a description of the state
of all activities in the schedule. It uses it to create an
updated partial schedule from the initial schedule in
execution, from which the re-planning session is started.

ATOS-4 Planner

The central problem of mission planning is the generation
of sequences of procedures which implement user and
operational requests. With respect to this problem, the goal
of the ATOS-4 Project has been to experiment with the use
of partial-order planning and constraint-based reasoning
methods to derive a generic model for a mission planner.
The sections below describe the elements of the planning
logical model, and the planning process.
Services. The first step in the planning is to generate
primary activities from user or operational requests
selected from the pool of requests available for planning,
on the basis of their preferred execution time window, and
their priority. Services are defined in the planning
database, one for each type of request accepted by the
planner. A service defines a static mapping of a request,
with preferred timings and arguments, to a set of activities
on the plan.
Activities. Two types of activities are handled in ATOS-4:
transitions between instrument modes, or maintaining an
instrument in a given mode.
Activities are characterised by
• A conjunction of preconditions on the model and plan

state.
• Effects on the model and on the plan state.
• Constraints on existing resources (use as well as

provision).
• An actual procedure, executable by the controlling

application.
The planning makes use of the required enabling
conditions of the primary activities to generate secondary
activities whose effects match those conditions. The
resource constraints are propagated during planning, and
solved when all required activities have been generated on
the plan.
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Resources. The planner handles several types of resources:
• State resources (e.g. in eclipse).
• Consumable resources (fuel).
• Reusable resources (link).
Initial profiles for these resources are sampled at intervals
depending on orbital event timings. The initial resource
profiles are generated from the mission model by
simulation and query. These profiles are then affected by
the activities generated in the course of planning.
Planning algorithm. The planning algorithm is divided in
two consecutive steps.
• The planning itself, i.e. generation of the secondary

activities required to enable the primary activities and
completion of the instrument timelines. This is
performed through partial-order planning, based on the
UC-POP algorithm. Each time a new activity is put on
the plan, all the constraints attached to it (resource,
temporal, etc.) are posted and propagated.

• An additional scheduling step, using constraint-based
reasoning to solve the constraints derived during the
planning.

Planning steps. The steps followed by the ATOS-4
Planner can be summarised as follows:
1. Get a model instance representing the state of the
mission at the start of the plan, produced by model
simulation.
2. Generate the resource profiles by simulation and query
of the model.
3. Read the user requests and generate the corresponding
primary activities in the order of priority of the requests,
using the service mechanism. If a primary activity
implementation results in resource conflicts that cannot be
solved, the primary activity is descoped.
4. Generate the secondary activities required to enable the
primary activities and complete the instrument timeline. If
the secondary activities cannot be created for a given
primary activity, the primary activity and all derived
secondary activities are descoped.
5. Map the activities generated to procedure execution
requests.

ATOS-4 Re-Planner

The ATOS-4 re-planner has internally the same structure
as the ATOS-4 planner. The difference between the
applications lies in the on-line nature of the re-planner, and
on a specific interface for receiving re-planning requests.
Re-planning can be triggered in several situations:
• Failure of a procedure execution, e.g. because the

procedure could not be started in its execution time
window.

• Introduction of a new request for procedure execution
to be implemented with high priority, typically a

request generated by the Diagnosis system.
• Report on direct execution of an immediate recovery

procedure triggered by the Diagnosis system, by-
passing the planner.

A re-planning request consists of a description of the state
of the schedule being executed, including actual execution
time for the executed procedures, as well as the
identification of the procedure executions that have failed,
new procedures to be inserted, and procedures whose
executions have been triggered by another source.
The re-planner can then deduce the whole set of
procedures that could not be executed from the nature of
the dependencies between the activities on the plan, and
produce an updated plan and the corresponding schedule,
which is directly transmitted to the controlling application.

Implementation

The ATOS-4 system has been implemented on UNIX SUN
workstations as an extension of ESA’s Spacecraft Control
and Operation System II (SCOSII), with C++ as main
implementation language.
The Kappa development environment from Intellicorp has
been used for many of the knowledge-based elements of
the ATOS-4 MCS, in particular for the mission model.
ILOG Solver and ILOG Scheduler have been used in the
constraint-based reasoning module of the Planning
component.

Lessons Learned

The main objectives of the ATOS-4 study were to
understand better the problems of integrating a large and
complex automated system with advanced functionality for
mission control, and to evaluate the use of such a system
for various types of mission.
The ATOS-4 system has been configured for evaluation
purpose to cover part of the needs of ESA’s earth
observation mission ERS-2.
Configuration and trials of the mission planning system
have revealed the following problems:
Mission Modelling. The use of a multi-purpose Mission
Model results in consistency and efficiency problems.
The ATOS-4 Mission Model covers the needs of three
different applications: simulation, planning, and diagnosis.
Both planning and diagnosis use abstractions of the
simulation model. For instance, the planner derives the
initial resource profiles for a plan from mission simulation.
An active mission model is executed, and the planner
extract samples of model variables at intervals from orbital
events. These samples are then used to build the resource
profiles. This allows relatively complex physical properties
of the model, such as the battery charge, to be used to
provide to the planner a profile for a resource. This
approach stresses the need for controlling the consistency
of the simulation model and its abstractions, which is
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essential for the development and maintenance of the
model. In the current implementation, the use of mission
simulation for planning also appears to be computationally
too costly.
Procedure Modelling. The modelling of a complex
procedure by an activity is difficult. The procedures
planned automatically should be restricted to command
sequences.
The notion of procedure in ATOS is directly derived from
the notion of automated operational procedure. As such, it
is a program in an operational language that can include
not only sequences of activities, but more complex
constructs such as loops, etc. There are two types of
procedures in ATOS: the time-tagged procedures, which
are restricted to sequences of time-tagged activities to be
executed on-board, and the standard procedures, which
cover on-board and on-ground activities, and have to be
executed through direct commanding (i.e. the satellite has
to be visible from a commanding groundstation). Most of
the procedures planned by the planner are time-tagged
procedures (in many cases they include only one activity,
corresponding to an instrument operation). One exception
is the case of the diagnosis procedures, which perform
checks on the systems and collect data for analysis. The
ATOS-4 Mission Model includes information about the
constraints related to the execution of atomic activities.
When these atomic activities are combined into more
complex structures that are not sequences, it becomes more
difficult to model even simple properties that are needed
by the planner, for instance minimum and maximum
duration as a function of the arguments of the procedure.
Note that this notion of procedure does not exist in
operational systems such as ERS or Envisat. For instance
the Envisat FOS MPS plans atomic activities and
sequences only.
Control of the Planning Algorithm. The performance of
the planning algorithm does not allow handling of large
numbers of dependencies between the activities and the
states of the system.
This problem is partly due to the implementation itself.
Nevertheless, it is likely that using the same approach in a
realistic case will result in major performance problems.
The key issue here is to find a way to control the planning
mechanism so that the user gets an answer in a reasonable
amount of time. The ATOS-4 planner incrementally
updates the plan by considering in turn requests according
to their priority. Requests that cannot be met are descoped
from the plan. The re-planner ensures the availability of an
updated plan within the interval between two commanding
pass by interrupting the planning at a configurable interval
between the pass and providing a solution. This approach
is not elaborate enough for handling real cases.
Planning Constraints. The representation of the mission
planning constraints through preconditions and effects
would require the extension of the expressiveness of the
language used to represent them, and therefore an

extension to the planning algorithm which would make it
ineffective, at least in its current implementation.
In ATOS-4, the activity preconditions and actions are
limited to conjunctions of predicative forms. They express
conditions that must hold before and when the activity is
executed, and effects during and after the execution. They
do not cover delays between related events. They do not
cover either the case when the condition that enables an
activity, or at least makes it sensible, must take place in the
future of the activity.  These cases would have to be
handled, as well as disjunctive preconditions and
conditional effects as they appear in UC-POP.

From ATOS-4 to Envisat FOS MPS

The limitations of the ATOS-4 planner, and the specific
interfaces it requires for integration to the rest of the
ground segment component, reduce considerably its direct
applicability for planning a full-size earth observation
mission. The Envisat Flight Operations Segment Mission
Planning System, described here below, is an example of a
planner for such a mission.

Envisat-1 Mission

ESA's new earth observation mission Envisat-1 will be
launched in 2001. It has more options available than its
ERS predecessors, including 9 instruments and a more
complex Data Management System, and these factors have
an important impact on the complexity of the Mission
Planning.

FOS MPS and Distributed Planning

The FOS MPS is the final link of a chain of planning
systems that contribute towards the overall planning of the
Envisat payload and ground segment. Each of these
planning systems is responsible for the performance of
certain planning actions, the results achieved being passed
down the line for further consideration and manipulation.
These planning functions recognize three distinct planning
levels – the amalgamation of these three sub-missions
(listed below) forming the overall mission.
• The Global Mission - the ongoing operations that

represent the long term mission strategy.
• The Background Regional Mission - more specialised

than the Global Mission in that it defines a utilization
strategy for regional instrument modes.

• The Regional Mission - specific requests that will tend
to have a higher priority compared with the other types
of Mission. These activities are not continuous in
nature, and cannot be determined in conjunction with
predefined events.

The FOS MPS must merge the content of the Regional
Mission and Background Regional Mission information,
provided by the Mission Configuration Facility planning
component, with the Global Mission Plan, generated by the
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FOS MPS in order to produce the consolidated Mission
Plan. Further checking will be performed upon this final
plan, to ensure that the planned operations are conflict free,
and that they do not exceed the imposed satellite
constraints.
Once it has been confirmed that the plan is acceptable, the
command schedules needed to drive the spacecraft itself,
the Station Computer (STC), and the Reference
Measurement System (RMS) are generated.

Design Constraints

The Envisat FOS Mission Planning System consists of a
suite of applications that cover the overall functionality
described here above. The central application of this suite
is the Plan Engine, responsible for the merging of events
generated from the three sub-missions, and for detecting
and solving conflicts between elements of the sub-missions
and resources available.
The following key factors have influenced the design
approach.
Specification of the planning requirements. The
planning requirements are usually specified as rules which
identify a situation and an action to be taken when the
situation occurs on the plan.
Dynamic of the planning requirements. Planning
requirements may be modified in the course of the mission,
to adapt to the evolution of the mission, or to optimize its
usage.
Use of external routines. The planning of several
instruments is actually performed by external routines
provided as C libraries by the customer, which have to be
integrated in the Plan Engine software.
User Interaction. The requirements on the interaction
between the user and the Plan Engine impose to consider
the planning as a set of intermediate steps, which can be
selected individually by the user.

Rule-Based Approach

Starting from a planning logical model similar to the
ATOS-4 one, the elements described above have led to the
following design for the Envisat FOS MPS:
• replacing in the planning model the planning

algorithm for generation of secondary activities by a
rule-based system.

• dropping provisionally the constraint-based reasoning
element of the system, which is not justified by the
nature of the problem.

The proposed use of rules to support the planning
algorithm of the Envisat FOS MPS aims at keeping the
planner more configurable with respect to changes to the
mission specification rules and constraints. It also allows
giving more control to the user on the planning process via
control of the sets of rules to be executed on the plan. Its
drawback is the hard-coding of the dependencies between

activities in rules, which prevents the system from finding
solutions that could be produced by a conventional non-
linear planning algorithm.
The rule-based component of the Envisat FOS MPS is
delivered as a C++ library of standard conditions and
actions, which can be used to create rules. The rule
condition and action evaluations are directly written in
C++ in the code of the classes.
Although the idea of a generic rule-based planning system
seems attractive and elegant, implementing a generic rule
language to implement the planning steps would be rather
risky. The dangers are
1. To produce a rule language whose expressiveness would
not cover all the needs of the Envisat FOS MPS.
2. To produce a complex language which would make
difficult the maintenance of the system.
3. That the design of a generic language would require a
significant effort, especially in the generalization of
concepts, which is not required by the final goal of the
project, i.e. the design and implementation of the Envisat
FOS MPS.
The alternative is to implement a simpler rule mechanism
based on a C++ library including a generic rule class and a
set of condition and action classes on the plan and on the
Mission Planning Database. Specific conditions or actions
that cannot be expressed using the basic set available can
be created by specialization of the condition or action
classes, leaving to the programmer the full expressiveness
of C++ to code them.
In doing so, we avoid the development of a dedicated
operational language for planning rules, while ensuring a
minimum query/action structure in the way planning steps
are implemented.

Implementation

The Envisat FOS Mission Planning System is being
implemented on SUN ULTRA workstations, with C++ as
implementation language. Release 2.0 of the Envisat FOS
MPS has been delivered to ESA in October 1999, and has
been accepted by the Agency.
It is expected that the system will be extended in the future
to accommodate other missions of the same nature as
Envisat, and to integrate alternative planning algorithms.

Conclusion

This paper aimed at giving an overview of two different
approaches to mission planning systems, both driven by
the ideal of software re-use and genericity. In each case,
the ultimate goal is of course different. The ATOS-4
planner aims at demonstrating the feasibility of automating
on-ground operations by integrating advanced applications
to a prototype Mission Control System. The Envisat FOS
Mission Planning System is an operational system, whose
development is also driven by requirements for safety,
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stability and maintainability, as well as by operational
considerations.
There are several factors which hinder the use of the
ATOS-4 approach for an operational mission such as
Envisat. The most important factors are interfacing to other
systems inside and outside the FOS, and the limitations and
characteristics of the internal planning approach itself.
The interfaces depend mainly on operational issues related
to the organisation of the mission, and are constraints on
the system. For instance, the ATOS-4 planner takes
advantage of its integration with the MCS and the power of
the controlling application, which can interpret schedules
as graphs of activities. The Envisat Flight Operations
Control Center is a traditional one, and the Envisat FOS
MPS is therefore restricted to schedules of time-tagged
command calls. In the same way, the operational concept
limits the decisions that can be taken by the planner, and
constrain them to operator supervision.
As far as planning is concerned, the ATOS-4 planning
approach cannot be considered as a fully generic approach
that would be applicable to all areas of Mission Planning.
Mission Planning covers a range of problems, which
cannot be covered by a single unique approach. Even in the
restricted scope of earth observation missions, many
complex problems are not addressed in ATOS-4 (e.g.
geographic target decomposition versus selection of one
temporal solution).
Many of the Mission Planning requirements of a mission
such as Envisat are related to the generation of primary
activities from external sources, covered partly by the
service mechanism and partly by the rule-based system.
ATOS-4 concentrates on the generation of secondary
activities based on causal dependencies. As such, the areas
of Envisat where ATOS-4’s approach could be directly
applied are limited, e.g.:
• The timeline completion, whereby the gaps between

partial plans of primary activities are connected to
make a full plan.

• The implementation of highly dependent activity
sequences. This is performed in Envisat by specific
external routines.

• The derivation of schedules of operational procedures,
which is not required for Envisat.

If the Envisat FOS MPS had to be extended in scope for re-
use in other missions, the first two applications would
surely benefit from extensions in this direction. On the
third point, recent evolutions of the Mission Control
Systems have focused on the integration of automatic
procedure execution to controlling applications, which
make the use of a planner is this area more likely in the
near future.
From a more general point of view, the current evolution
of AI planning systems towards providing solutions to
operational planning problems would benefit from making
these systems easily available for evaluation in the scope
of operational missions. Providing guidance on the

potential use that can be made of them with respect to the
mission requirements would be an additional step towards
the application of these techniques in operations. Working
towards more open systems, in order to facilitate their
integration to operational infrastructure is another major
factor that would make possible the use of advanced
techniques in an operational context.
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Introduction 

The paper in question essentially discusses two mission 
planning systems, one which uses at its core UC-POP, a 
result of several decades of AI research in automated plan 
generation, and the other which resorts to encoding 
human plan knowledge in the form of rules to be executed 
by an rule-base system (RBS). The orientation of the 
former system, the ATOS-4 planner, is as an experimental 
prototype, whereas the latter, the Envisat mission 
planning system, is in the context of a near fielded 
application. 
 The concern that leapt to my mind after reading this 
paper was simply how do the authors expect to carry out a 
real planning application without a planner? A rule-base 
system (RBS) can only guarantee that it will fire all rules 
that apply when they apply, but it can guarantee nothing 
about finding a plan in the space of action sequences. In 
my on line interchange with the first author, I came to 
realize that several issues bear on this question: 
 
 • existing software can limit what any planner can do 
 • the need to extend the planning approach 
 • the reality of human computer interfaces (HCI) 
 • the trade-off between a theoretical loss of power and 
an approach that will just get the job done for most intents 
and purposes 
 
 All four of these issues point to hard questions that 
need to be answered in the future, both for the AI 
community and for those who would apply AI results. 

Existing Software 

 
I learned in my interchange with the first author that apart 
from the basic logical model, the Envisat system was fully 
developed from scratch, yet some modules for the 
generation of primary activities for specific instruments 
had been developed by the space engineers as separate 
libraries. These procedures are not easily reduced to 
sequences of actions with start and end times, but can 
include arbitrary types of code. This makes it more 

difficult to model even simple properties that are needed 
by the planner, for instance minimum and maximum 
duration as a function of the arguments of the procedure. 
 In many applications, particularly control applications, 
one is usually constrained by the software that has been 
hand-coded for particular instruments. In a very large 
project we under took to control life support systems 
[Schreckenghost et al 98], we were constrained to build a 
hybrid control system "on top of" a suite of legacy control 
software. As a result we were not able to realize the 
theoretical efficiencies of the hybrid system. 

Extending the Planner 

 The authors learned through their endeavors that the 
UC-POP system they might use from ATOS-4 for Envisat 
was limited in terms of the temporal constraints that exist 
between the depending activities in both environments. In 
UC-POP, secondary activities can only be created before 
or during the main activity. An attempt was made to 
analyze the dependencies existing between the Envisat 
mission activities; the temporal dependencies that can 
exist between them were far wider in scope. Basically a 
precondition for enabling an activity could be created by 
other activities anywhere in the plan, within constraints 
with respect to the initial activity. Many dependencies 
include fixed or variable delays (e.g., the secondary 
activity must have been executed at least one hour before 
the initial one). This capability would have to be added. 
The planning algorithm itself would have to be extended 
to handle threads to dependencies with future activities. 
 Here then we see a real limitation of a planning 
algorithm for a particular application. If the team were 
supported by a nearby research group, as is the case in 
several CMU projects where AI is applied in the nearby 
community, the Envisat team might have considered 
effecting the needed changes. But such was not the case, 
and the team had little experience in the use and 
modification of planners, and certainly not with the 
specific UC-POP code. As the first author put it in one 
exchange with me 
   

The technical constraints on the design 
in general were such that it was not 
clear that we could use the ATOS 
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approach and still take advantage of it. 
The rule-based approach was 
considered safer. 

The Reality of HCI 

The Envisat team was more familiar with RBS 
techniques, than with planning software. This was 
especially true with regard to developing interactive 
human computer interfaces. It was not clear to them that 
they could extend the AI planning approach such that it 
would have accommodated the user interactive 
requirements and have it working on budget and schedule. 
 The HCI requirements in any application are as critical 
as any theoretical aspects associated with the type of 
problem. But here I suspect there might have been ways 
to build an HCI to UC-POP, and that the real issue was 
the limited budget. For instance, we have used an HTN 
planner at NASA-JSC since 1994 [Bonasso et al 97]. It 
came with an CLIM interface which was limited in what 
it could provide the user. Our solution was to make the 
HCI a separate application executable on a wider variety 
of workstations, and network it to the planner using a 
client-server message passing system. 

Theory versus Practicality 

There’s no denying that UC-POP is sound and complete. 
It’s not clear what one can say about a planner built in an 
RBS. My claim is that the UC-POP system will find a 
plan when the RBS planner may not. So it stands to 
reason that one should make an effort to "extend" the 
planning system rather than "settle" for the less complex, 
but fault prone RBS. 
 But it’s not that simple. Although I have no personal 
experience with UC-POP, I understand that it is usually 
difficult to modify systems which emerge from an 
academic environment. As well, the ATOS team was not 
allowed to use the Lisp version, and had to recast the 
algorithm in C++. They did some of the extensions 
mentioned above  for ATOS, but there was little time to 
effect all the needed changes for Envisat. 
 Further, there may be something to be said for what an 
experienced RBS team can do to provide an intelligent 
system on time and within budget, and still come up with 
a better than average reasoning system. The Envisat 
system basically schedules activities for satellites. The 
system will always produce a solution. It will simply de-
scope requests and move activities around until it finds 
one. In the worst case this will be the degenerate solution: 
switching all the instruments to their safe mode. The team 
is wary of some of the pitfalls: 
 

We try to control things in the rule-
based approach by splitting the rule set 
in modules that are activated 
separately. In practice, we only have to 

hope that our testing of these modules 
will ensure a correct functioning of the 
system, as per any other application. 
The modules are combined in finite 
sequences, so the risk is limited to 
individual modules. The risk actually 
exists for some modules only. 

Conclusion 

Nevertheless, my gut feel is that as earth observing 
satellites become more advanced, and as we begin to need 
to control more than one of them at a time, the task will 
quickly overcome an RBS approach. So what is to be 
done? I believe some answers lie within the AI research 
community but most must come from those who seek to 
apply AI technology. 
 Making major AI systems accessible via a remote HCI 
must have more of a priority in AI research. If we wish to 
see our solutions used in real world applications, we must 
make the development of APIs to get at function, value 
and representation an equal partner with efficiency and 
theoretical soundness. Of course that requires us to 
convince our funding groups of that need. Pointing out 
applications like Envisat can be a first step in that 
argument. 
 The rest of the issues seem to me to be resolvable if the 
engineering team makes the case for a budget which looks 
to the future. For instance, getting help in the form of 
consultation by universities might uncover solutions to 
extending a given planning algorithm. Or perhaps UC-
POP isn’t the planner for this problem. In my opinion, 
with the future in mind, it behooves the Envisat team to 
investigate other planning approaches. For example, the 
Envisat temporal constraints might be more readily 
handled with an interval planner such as the one used in 
Remote Agent [Pell et al 97]. Also, some planners exist 
that can accommodate user functions and legacy software. 
Two of these are SIPE as used in Cypress [Wilkins et al 
95], and AP as used in 3T [Elsaesser and Slack 94]. AP in 
particular allows the integration of user functions in its 
operator preconditions, effects and task nets. 
 And finally, an effort ought to be made to convince 
management to include a person skilled in AI planning on 
the applications team. So many large applications require 
planning techniques that it should be worth the effort in 
the long run. 
 All of these suggestions require more time and 
resources. But I believe the answer is to convince the user 
of the importance of employing the very best technology 
has to offer rather than settling for good enough.   
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Abstract

Information manipulation is the creation of new infor-
mation based on existing information sources. This
paper discusses problems that arise when planning for
information manipulation and introduces an action lan-
guage, adlim, that addresses these problems. Topics
include

• How to represent information in a way sufficient to
express the effects of actions that modify the infor-
mation.

• How to concisely represent actions that copy infor-
mation, or produce new information that is based on
existing information sources.

• How to generate a pipeline of information-processing
commands that will produce an output containing
the desired information.

1 Introduction

A big part of NASA’s job is information management.
Satellites, unmanned spacecraft, planetary rovers and
observatories, for all their complexity, can all be viewed
as remote sensors; their sole purpose is to gather data,
which they transmit across a vast, interplanetary net-
work, where it is processed, delivered to the scientific
community, and archived. Just as controlling space-
craft is a complex task that can benefit from automa-
tion, so is managing the data that spacecraft returns.
Currently, automation usually consists of writing some
scripts to handle expected cases. Some problems with
this approach are lack of flexibility in the face of chang-
ing requirements or one-time requests, lack of robust-
ness in the face of errors or unanticipated events, and
poor data tracking. The latter is a serious problem,
since much of the information about various data files
and how they are inter-related is stored in the heads of
operators, who will eventually go on to other missions,
or forget.

We are developing a system, called imagebot1, to
automate information manipulation tasks, such as gen-
erating mosaics or converting file formats, and to

1IMAGE stands for Information Manipulation, Archiv-
ing, Gathering and Extraction

automatically record in a database the vital meta-
information about files that have been produced, such
as how they were generated, or which parts of the
telemetry logs correspond to which science data. im-

agebot will robustly respond to errors, such as disks
filling up, and will be able to provide greater function-
ality than hand-generated scripts, since it will generate
its own scripts based on user-supplied goals.

This work builds on experience with the Internet
Softbot (Etzioni & Weld 1994) and other information-
gathering agents. However, the information manipula-
tion problem is beyond the grasp of current softbots.
There has been considerable work on developing plan-
ners for gathering information, but almost no work on
planners for manipulating information. That is not be-
cause manipulating information is not important, but
because representing actions that manipulate informa-
tion is hard. For example, in the Internet Softbot, the
copy action was never cleanly or accurately represented,
and it was impossible to represent Unix pipes (which
redirect the output of one command to the input of
another) or actions like tar (which creates an archive
of a collection of files) and difficult to achieve image
processing tasks.

We present an action language, adlim, that is ca-
pable of representing such actions easily and concisely.
adlim stands for Action Description Language for In-
formation Manipulation, and is an extension of Ped-
nault’s adl (Pednault 1989). It is intended for problem
domains, such as space science missions, where informa-
tion manipulation tasks, like image processing and data
archiving and distribution, are commonplace.

The next section discusses how actions and goals
for information manipulation are represented in adlim.
Section 3 discusses a problem that comes up when try-
ing to represent actions that copy or modify information
and shows how it is a generalization of the frame prob-
lem. Section 4 discusses temporal projection in adlim

and illustrates it with a simple example from a plane-
tary rover domain. Section 5 discusses related work.

2 Information manipulation
Since the purpose of adlim is to represent actions that
process data inputs and produce data outputs, inputs
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and outputs are explicitly declared in action descrip-
tions. Every variable is declared as an input, output,
parameter or quantified variable. Inputs and outputs
are distinct from other variables in that an input is not
guaranteed to exist after the action is executed, and an
output does not exist before the action is executed.

An action that has no inputs and one or more outputs
is called an information source. An action that has one
or more inputs and no outputs is an information sink.
An action that has one or more inputs and one or more
outputs is an information filter. An information filter
processes the inputs, producing the outputs. Contrary
to the behavior of a physical filter, it does not neces-
sarily remove anything from the input, and may add
something or change it completely.

Effects
Uwl (Etzioni et al. 1992) and sadl (Golden & Weld
1996) represent information-producing actions using
the annotation observe. For example, to represent
that executing the action ls /bin reveals the name of
every file in /bin, the sadl encoding would be:

∀f ∃n when (in.dir(f, /bin)) observe(name(f,
n))

However, the encoding using the observe annotation
does not actually represent the effects of ls, but rather
the combination of ls with a program to interpret its
output and produce a set of knowledge base updates.
Such a program is called a wrapper. Since a filter works
on the syntactic output of a program, not the semantic
interpretation, using observe throws away vital infor-
mation that a planner needs to reason about the effect
of a filter: the syntax. Instead, we describe the syntax
of the output directly. We divide conditions that can
be sensed into two categories: simple observables and
fluents.

Simple observables are functions or relations
whose value is independent of the situation in which
they are evaluated. For example, the relation con-
tains("foobar", "foo") is easily answerable by examin-
ing only the syntactic representation of ”foobar” and
”foo”. Rather than providing a sensing action for a
simple observable, we provide a function that returns
its value (if all arguments are bound), or provides addi-
tional constraints for its arguments (if some arguments
are not bound).

Fluents are functions or relations whose value de-
pends on the situation. For example, the relation
in.dir(foo,/bin), which means the file foo is in the di-
rectory /bin, will be true in some situations and false
in others. A sensing action can be described using con-
ditional effects, where the antecedent refers to the sit-
uation in which the action is executed, described using
fluents, and the consequent refers to the contents of the
output, described using simple observables. E.g., the
effect of ls discussed above would be

∀f (parent.dir(f) = /bin) →
contains-line(name(f), out)

This translates to “For each file in directory /bin, there
is a line in the output that is equal to the name of the
file.” The → is used instead of when (which is used in
sadl) to indicate a conditional effect. The reason for
this notation will become clear in the next subsection.
We will use LHS to designate the expression on the left
hand side of the → and RHS to denote the expression
to the right of the →. Note that we use function com-
position as a shorthand. The above goal is equivalent
to

∀f, n (parent.dir(f) = /bin ∧ n = name(f)) →
contains-line(n, out)

Two things to note are that name(f) is now on the LHS
and n is universally quantified (∃ was used in the sadl

example). ∀ and ∃ are equivalent when the variable
represents the value of a function, since there is alway
exactly one possible value. We use ∀ here because it’s
simpler. Other examples in the paper can be trans-
formed in the same way: replace each nested function
with a new universally quantified variable and add an
equality constraint between the variable and the func-
tion to the LHS.

Goals

Information manipulation goals, like effects, must be
explicit about the syntax of the output. Consider the
goal of outputting the result of a query to a file. Merely
ensuring that the file contains the information is not
sufficient. For example, a list of file names should not be
mixed up with a list of userids, since it may be difficult
to tell which is which. Furthermore, if the file is to be
read by another program, there will be exact formatting
requirements.

Suppose our goal is to to produce a killfile, which is
a list of email addresses that we don’t want to receive
email from, each on a separate line. Let’s say we don’t
want to receive email from anyone who has sent us email
containing the string ”MAKE MONEY FAST.” We might
express this goal as:

∀em email-received(em) ∧
contains(subject(em), "MAKE MONEY FAST")
→ contains-line(sender(em), killfile)

This has the same form as the conditional effects dis-
cussed in Section 2, but the meaning is slightly differ-
ent. Whereas, in effects, the statement A → B indi-
cates that if A is true before the action is executed
then B will be true after the action is executed, in
goals it means that if A is true before the plan is exe-
cuted, then B must be true after the plan is executed.
In sadl goals, A would be represented using initially
and B would be expressed using satisfy (Golden &
Weld 1996). One problem with the above goal is that
including all known email addresses in the killfile would
also satisfy the goal. To express more restrictive goals,
we also allow expressions of the form A

⇔
→ B, which is

equivalent to (A→ B) ∧ (¬A→ ¬B).
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Information pipelines

An information pipeline is one or more information
sources followed by a sequence of filters, possibly ter-
minated by an information sink, in which the output
of each action is directed to the input of a following
action. The effects of an information pipeline can be
represented in the same way as the effects an individual
action. The LHS refers to the conditions that are true
when the first action is executed and the RHS refers to
the contents of the output and the conditions that are
true after the last action is executed. This representa-
tion can be generated automatically from the individual
action descriptions, using the same process that is used
in planning (see Section 4). In this manner, a precise
description of of the contents of the output of a pipeline
is generated, relating the meaning of the information
to its form. This description can be archived, along
with the time and circumstances under which the out-
put was generated, for later use by IMAGEbot. Thus,
if IMAGEbot has a goal, or subgoal, of generating a file
with particular properties, and it has generated such
a file before, it can use the previously generated file
instead.

The same approach can be used to describe files or
other information resources not generated by IMAGE-
bot. It can then use these as information sources for in
its plans.

3 The copy problem

The representation of information filters presents a
challenge. A filter creates a new object, such as a text
file, which is based on an existing object. Although the
input and output of a filter are distinct objects, they
have much in common. The output may be a copy of
the input, with some changes.

We call this the copy problem, which can be under-
stood by considering the effects of a photocopier. Ini-
tially, we have an original of a document and a blank
sheet of paper. After running the photocopier, every-
thing that was true about the original is still true (the
frame problem). Additionally, most everything that
was true about the original is now also true about the
formerly blank page (the copy problem). In some ways,
the copy will differ from the original – for instance, it
may be of lower quality, or the original may be color
whereas the copy is black and white, but if the original
contained, say, a tax form, or the first 500 digits of π,
then so will the copy. Listing all of these conditional
effects explicitly would be impractical.

The copy problem is just a generalization of the frame
problem; if the original and the copy are the same ob-
ject, then we have a restatement of the frame problem.
But we are interested in the case where the objects are
different.

There have been many solutions to the frame prob-
lem, from the strips assumption to logical formalisms
such as (Reiter 1991). None of these directly meets our
needs, since they are solving a different problem. What

we need is to explicitly state that an output is identi-
cal to an input unless stated otherwise. For example,
when creating a compressed copy of a file, one should be
able to declare that the size and compression of the files
are different, but in all other respects they are identi-
cal. We refer to such declarations as generalized frame
effects (GFEs): The effect frame(source, dest) in an ac-
tion a means that, for any predicate or function p, the
value of p(dest) after a is executed is the same as the
value of p(source) before a is executed, unless contra-
dicted by another effect of a. Source and dest need
not be the same type, but predicates defined for source
must also be defined for dest. Given such declarations,
it is straightforward to formalize them using one of the
elegant formal solutions to the frame problem.

We require that each dest be a newly created object
and the target of only one GFE. However, a single out-
put can comprise many distinct objects, each of which
may be the target of a separate GFE (see the descrip-
tion of tarc below). Given incomplete information,
not all the consequences of the GFE will be known,
but anything known about source will be known about
dest, and all prior positive knowledge will still be valid.
However, negative knowledge, including LCW knowl-
edge, may be invalidated.

One might imagine dispensing with the inputs and
outputs and representing all actions as destructive.
Then the STRIPS assumption could be used to preserve
attributes of the files that don’t change. This would re-
quire that all files that need to be preserved be explicitly
copied (Chien et al. 1997). However, doing so merely
pushes the frame problem into the action copy(f1, f2),
since for any proposition p(f1) that is true before the
copy, p(f2) should be true afterward. Furthermore, this
approach is only applicable in cases where a single in-
put is mapped to a single output. It will not help when
modeling the effects of an action that generates mosaics
(combining many images into one).

Example
To illustrate the use of frame effects, consider the Unix
command tar, for creating and extracting tar files. A
tar file is an archive (tar stands for tape archive) of
some collection of files. It is really little more that a
concatenation of all the files, with some extra informa-
tion to indicate where one file begins and another ends
and the relative pathnames of the files. We refer to the
portion of a tar file representing a particular file as a
file record, and we use the predicate contains(t, r) to
indicate that tar file t contains file record r. There is
no magic in contains. In fact, it’s a simple observable,
since, given the complete contents of a tar file and a
file record, testing whether the file contains the record
is a matter of a linear search through the tar file for
contents that exactly match the record.

We represent the two functions of the tar command
with two different actions. The tarc action creates a
tar file from the contents of a directory, descending the
directory hierarchy recursively. To avoid representing
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the recursion explicitly, tarc does not refer to directo-
ries, but to pathnames. A file is (recursively) contained
within a directory if the pathname of the directory is
a prefix of its own pathname. The parent.dir function
can also be defined in terms of pathname. The out-
put of tarc is a newly created tar file, containing a file
record for each file reachable from the directory. Each
file record is identical to the original file, except that it
has only a relative pathname, and it is not located on
any machine.

action tarc (path dp, exec-context ec)
output: tarfile out
precond: pathname(currentdir(ec)) = dp
effect:
∀ file(f),path(lp)

(pathname(f) = concat(pd,"/",lp) ∧
host-loc(f) = currenthost(ec))
→ ∃ file-record(fr)

frame(f, fr)∧
host-loc(fr) = nil ∧
contains(out, fr)∧
pathname(fr) = lp

exec: "tar cf -"

The tarx action extracts information from the tarfile
and creates the corresponding files and directories in a
new location. For each file record in the tarfile, a new
file is created, identical to the file record, except that
it has a new pathname and host location. Although
these action descriptions omit some minor details, they
are essentially complete. The key to their brevity is
the frame effects, which stand for a huge number of
statements.

action tarx (path dp, exec-context ecin)
input: tarfile in
precond: pathname(currentdir(ecin)) = dp
effect:
∀ file-record(fr),path(lp)

(pathname(fr) = lp ∧ contains(in, fr))
→ ∃ file(f)

frame(fr, f) ∧ ¬contains(in, f) ∧
host-loc(f) = currenthost(ecin) ∧
pathname(f) = concat(dp,"/",lp)

exec: "tar xf -"

It is common practice in Unix to use tar to copy large
file hierarchies from one machine to another. In Section
4, we provide a short example showing how the frame
effects allow properties to be preserved across copy op-
erations using tar.

4 Reasoning about plans

Our definition of a planning problem is the standard
one: Given descriptions of allowable actions, a goal and
the initial state, produce a plan that, when executed
starting from the initial state, will move the world to a
state satisfying the goal. Regardless of the specifics of
planning algorithm used, a planner following this defi-
nition must be able to answer one of the following ques-
tions:

• If I execute this action, how will the state change?
(progression)

• If I want my goal to be satisfied after I execute this
action, what needs to be true beforehand? (regres-
sion)

We discuss regression in adlim. We do not discuss pro-
gression, which is somewhat more complicated, but we
note that since part of an adlim goal refers to the initial
state, progression affects not just the initial state, but
also the goal. We conjecture that under some circum-
stances (such as information gathering) that forward
planning will be more efficient than backward planning,
and that a mixed strategy is likely to work the best.

Regression
Goal regression means determining the conditions that
need to be true in the initial state for an action or action
sequence to achieve a given goal. We will use Ra(Γ)
to represent the result of regressing Γ through action
a, and R{a}n1 (Γ) to represent the result of regressing Γ
through the action sequence a1; a2; . . . ; an. Regression
closely follows (Pednault 1986).

Regression of the empty plan succeeds iff, in the ini-
tial state, the LHS implies the RHS.

R{}(Φ→ Ψ) = (Φ⇒ Ψ)

Regression of a plan consists of successively regressing
each action, starting with the last.

R{a}n1 (Γ) = Ra1(Ra2(. . .Ran(Γ)))

Conjunction, disjunction, quantification and negation
are handled in the usual manner. Namely, Ra(Γ1 ∧
Γ2) = Ra(Γ1) ∧ Ra(Γ2), Ra(Γ1 ∨ Γ2) = Ra(Γ1) ∨ Ra(Γ2),
Ra(¬Γ) = ¬Ra(Γ), Ra(∀xΓ) = ∀xRa(Γ) and Ra(∃xΓ) =
∃xRa(Γ).

Given a goal of the form Φ → Ψ, regress the Ψ and
leave the Φ alone (since it already refers to the initial
state).

Ra(Φ→ Ψ) = Φ→ Ra(Ψ)

Finally, to regress a single literal: ϕ is true iff the action
makes it true, or if it was true previously and the action
doesn’t make it false.

Ra(ϕ) = (Σaϕ ∨ (ϕ ∧Πa
ϕ))

where Σaϕ means action a enables ϕ (makes it true)
and Πa

ϕ means a preserves ϕ (doesn’t make it false).
Informally, Σap(c) is true iff a has an effect p(c), or if

p(o) is true, and a has an effect of the form frame(o, c)
and doesn’t have an effect ¬p(c). Πa

ϕ is equivalent to
¬Σa¬φ.

Example
To illustrate goal regression, consider the following
highly simplified example. Suppose our goal is to store
the images downlinked from a planetary rover in the
directory /images, with a compression quality of 95%.
Achieving this goal requires no sensing.
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∀ image j ∃ file f, filename fn
fromdownlink(j)∧format(j)=JPEG →
pathname(f) = concat("/images/", fn)∧
copy-quality(f, j)≥ 0.95

We will regress this goal over “lifted” actions, as a
planner would, but we gloss over certain subtleties of
constraint reasoning, skolemization, and the like. The
last action in the plan will be tarx, to extract files
from a tar file, so we, regress through tarx first. We
will call that action a1, and rename all variables from
the action by prefixing them with “a1.” The goal path-
name(f) = concat("/images/", fn) is satisfied by a1

if concat("/images/", fn) = concat(a1.dp, “/”, a1.lp).
Note that one solution for this constraint is a1.dp =
"/images". If we provide the background knowledge
that fn, being a filename, cannot contain “/”, and
a1.dp, being a pathname, cannot be the empty string,
then that solution is unique. However, even without
that background knowledge, a1.dp = "/images" is the
only solution that will be found as part of a correct and
unambiguous plan. Any other solution either leaves the
suffix of parameter a1.dp unspecified or adds an unsup-
ported constraint to the prefix of a1.lp.

The predicate copy-quality does not appear in the ef-
fect of action a1, but there is an effect frame(a1.fr,
a1.f), which will transfer the copy-quality of a1.fr to f .
Thus, the goal copy-quality(f, j)≥ 0.95 will be satisfied
if copy-quality(a1.frj , j)≥ 0.95 is true in the prior state,
where a1.frj is a new existentially quantified variable,
within the scope of j, that is used in place of the ∀
variable a1.fr. Finally, the LHS of the conditional ef-
fect and the precondition of the action must be true.
Thus, the goal is now:

fromdownlink(j)∧format(j)=JPEG →
a1.dp = "/images" ∧
pathname(a1.frj) = fn ∧
contains(a1.in, a1.frj) ∧
copy-quality(a1.frj , j)≥ 0.95 ∧
currentdir(a1.ecin) = a1.dp.

Regressing through the cd action satisfies the currentdi-
rectory goal. Then regress through tarc, which we will
designate a2. The contains condition will be satisfied if
a1.in = a2.out. The pathname condition is satisfied if
the LHS is true. Once again, the copy-quality condition
can be satisfied by resorting to the frame effect of a2,
resulting in the goal copy-quality(a2.fj, j)≥ 0.95. The
resulting goal agenda is:

fromdownlink(j)∧format(j)=JPEG →
a1.dp = "/images" ∧ a1.in = a2.out ∧
copy-quality(a2.fj , j)≥ 0.95 ∧
pathname(a2.fj) = concat(a2.pd,"/",fn) ∧
host-loc(a2.fj) = current.host(a2.ec) ∧
currentdir(a2.ec) = a2.dp

The constraint on a1.dp specifies a parameter of tarc,
the directory to extract the tar file into. The constraint
a1.in = a2.out specifies that the output of tarx must

be directed to the input of tarc. Once again, regress-
ing through cd satisfies the currentdirectory goal. Now
suppose there is an action get-downlink, which gets all
the JPEG images from the downlink and stores them in
a directory /downlink/jpg, ensuring that each image
has a quality of 0.99. Call that action a3. The effect of
a3 would be

fromdownlink(a3.g)∧format(a3.g)=JPEG →
copy-quality(a3.c, a3.g)= 0.99 ∧
pathname(a3.c) =
concat("/downlink/jpg/", filename(a3.c) ∧
host-loc(a3.c) = current.host(a3.ec)

The resulting goal agenda would be

fromdownlink(j)∧format(j)=JPEG →
a1.dp = "/images" ∧ a1.in = a2.out ∧
a2.pd = "/downlink/jpg/" ∧ a2.ec = a3.ec ∧
fromdownlink(a3.g)∧format(a3.g)=JPEG

The last two conditions are implied by the LHS
of the goal, so they are automatically satis-
fied. The remaining conditions are parameter
choices, which are trivially satisfied. Thus, the
plan get-downlink;cd /downlink/jpg; tar xf - |
’(cd /images; tar cf -)’ achieves the goal. In
practice, downlinks are not initiated directly by the
planner, and the goal would involve moving the files
to a different machine rather than just a different di-
rectory. That could be accomplished by inserting an
rsh (remote shell) command between the tarx and cd
commands.

5 Conclusions
We presented adlim, the Action Description Language
for Information Manipulation, which can concisely rep-
resent actions that copy all or part of an input to an
output. We observed that this is a generalization of
the frame problem, which has not been noted before in
the planning literature, and presented a solution, using
frame effects. We showed how information gathering
can be accomplished in this framework.

Future work

We are building a constraint-based planner for adlim,
but many issues still need to be resolved. Constraint
reasoning in adlim is especially challenging, since most
constraint solvers assume that variable domains are
static, whereas, in adlim, domains may be completely
or partially unknown. We are working on a constraint
solver, using procedural constraints (Jönsson 1997),
that can cope with unknown domains.

Related work

We have already discussed the relation between Adlim

and uwl (Etzioni et al. 1992), adl (Pednault 1989)
and sadl (Golden & Weld 1996). Collage (Lansky &
Philpot 1993) and mvp (Chien et al. 1997) both auto-
mate image manipulation tasks, a motivating problem
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for adlim. However, they don’t focus as much on accu-
rate causal models of information manipulation. mvp

requires actions to destructively modify their inputs, re-
lying on the strips assumption to preserve properties
not listed in the action’s effects. Collage relies solely on
abstract action decomposition and thus does not need
a precise causal theory of the actions.

Representing actions that manipulate information is
related to representing sensing actions. (Moore 1985)
introduced a theory of knowledge and action, based on
a variant of the situation calculus with possible-worlds
semantics, which included an analysis of information-
providing effects. (Scherl & Levesque 1993) built on
Moore’s work, providing a solution to the frame prob-
lem for knowledge-producing actions. The semantics
for adlim has been specified following their formal-
ization, but we base our language on adl, which al-
lows for more tractable planning. Our treatment of
knowledge-producing actions using conditional effects
follows (Pryor & Collins 1996) and others, but we are
unaware of work that treats goals in a similar manner.

There are many other action languages that repre-
sent sensing, but none of them have the expressiveness
of adlim. They either disallow sensing the value of
a variable (Levesque 1996; Goldman & Boddy 1996;
Pryor & Collins 1996), thus restricting sensors to re-
turning a finite set of possible values, or they disallow
the use of conditional effects to describe sensing actions
(Kwok & Weld 1996; Levy, Rajaraman, & Ordille 1996;
Knoblock 1996; Babaian & Schmolze 1999; Etzioni et
al. 1992), which is essential for representing informa-
tion outputs that can be manipulated by other actions.
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Introduction 

This commentary discusses the paper: Acting on 
information: A planning language for manipulating data. 
The planning language is an action description language 
used to manipulate information, such as images from a 
spacecraft, and the paper describes how it works.  
Examples are given using mathematical expressions.  The 
author helped clarify some of the symbols and how they 
are used or referred to. 

Observations 

My synopsis of this paper is the ADLIM action description 
language is used by the planning tool IMAGEbot to 
manipulate spacecraft information, though the type of data 
or information probably does not matter, and how ADLIM 
can convey data descriptions along with the manipulation. 
The planning tool IMAGEbot is briefly discussed as to its 
role in automating the information manipulation and the 
storage of vital meta-information that corresponds with the 
manipulation output. But the main focus of the paper 
details how the ADLIM language works in relation to 
similar products and keys on problem areas that arise when 
planning for information manipulation. One such problem 
area is how to emulate the tar (copy) function. The paper 
provides comparisons to other similar language products 
that do not handle this function well.  
 To demonstrate the problem areas, the author steps the 
reader through examples showing how ADLIM represents 
and reasons with actions. The examples used are very 
practical especially dealing with copy actions like tar to 
show how the action language uses frame effects, action 
goals, procedural constraints, and temporal projection to 
sense and manipulate data robustly and generally.  The 
paper describes each of these properties culminating with 
the conclusion.  
 What really caught my attention was in the Introduction 
section describing how scripts used to manipulate data do 
not convey information about the data such as its inter-

relationship among various pieces of data, its meta-
information, and the tracking of the data.    If ADLIM can 
truly convey this type of information along with the 
manipulation action it could be a very useful language tool 
indeed. 

Comparison to EOS 
With ADLIM the action language uses its various 
properties to include information about the data and the 
tracking of the data. With EOS, the science data for the 
Terra spacecraft depends on data type descriptor files 
called metadata that identifies and categorizes each specific 
data product used throughout the science data processing.  
The metadata file provides file origin, content description 
and layout, quality, condition, and how to decode, 
interpret, and process the data.   To process any EOS 
science data type, the user must obtain the corresponding 
metadata file in order to know how to deal with the data.   
The paper indicates ADLIM can possibly provide similar 
data descriptions with the action language. 
 Data manipulation within EOS is primarily by software 
with scripts to automate the processing and to control 
where the data goes after each step.  Any errors or changes 
to any data format or manipulation process may require a 
software change. This makes the EOS system very rigid 
when dealing with permanent changes, emergency 
changes, and special requests.  The use of the ADLIM 
action language instead of software and scripts could 
alleviate this restriction. 
 One common area to both EOS and ADLIM is the use of 
relational databases.  The author explained that relational 
databases are quite easy to model in a language like 
ADLIM since it is at heart a relational language; i.e., 
functions can be easily mapped to relations.  Plus, a 
database is essential for storing data and a relational 
database provides a means to retain with data its inter-
relationships with other data. 
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Conclusion 

Of course, switching to ADLIM for existing spacecraft 
systems would be costly and time consuming. But the 
author states that the versatility and structure of ADLIM 
and the planner tool IMAGEbot would allow it to be 
integrated into existing ‘legacy’ systems without requiring 
changes to the systems because ADLIM can model the 
user interfaces or APIs of those systems.   Future 
spacecraft systems in the pre-design phase have the option 
of selecting the best method for managing information and 
hopefully IMAGEbot and ADLIM will be among the 
selections. 
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Abstract

Autonomous agents are a challenging concept for
future unmanned operations. Previous space and
aeronautic missions highlight the lack of on-board
intelligence to increase the decision making capa-
bility and to e�ciently react to unexpected sit-
uation or events. Many agent-based system ap-
proaches exhibit good properties, as demonstrated
in ight during the Deep Space1 mission. This
paper presents a multi-agent system framework
with on-board planning, based on constraint solv-
ing models, applicable to a constellation of satel-
lites

Introduction

A constellation of satellites (formation ying) will re-
quire more cost e�ective operation and signi�cant in-
crease in performances, pointing accuracy, reactivity
and orbital control. It requires a global management of
operations and interconnections, as well as an optimiza-
tion of the utilization of communication links either be-
tween the ground and space segments or between satel-
lites. This requires to deal at the same time with sev-
eral related system functions layered in di�erent level
of granularity. For example, a global con�guration and
operation modes management of the constellation has
to be compliant with the diverse local modes switching
or state transitions, involving cooperative or reexive
policies.

The use of distributed functions over a spacecraft con-
stellation (such as planetary observations) makes mis-
sion planning more complex. Today's technology en-
ables us to safely process on-board each satellite, a
certain number of functions traditionally performed on
the ground (such as attitude & orbit, state transi-
tion and con�gurations, planning & scheduling). By
joining distributed systems theory and emerging arti�-
cial intelligence results, recent researches carried out in
space (Ber98; MP98) and aeronautics (Yav94) domains
emphasized the bene�t of using Multi Agent Systems
(MAS) (HJ96). In practical examples, MAS appears as
a constructive approach that can tackle underlying di�-
culties like uncertainty, completeness (HJ96) and many
applicative requirements (Yav94) such as:

� A�ordability: Modern systems can make use of com-
ponents o�-the-shelf which requires a better modu-
larity of software and hardware.

� Performances: Autonomous systems have to execute
missions under real-time constraints requiring pow-
erful observations, rapidly analyzing input data and
selecting the right alternative.

� Flexibility: Systems are expected to adapt their be-
havior as required by changes in environment. This
may require the system to dynamically recon�gure.
It must then have the ability to build a good repre-
sentation of its environment.

� Availability: Systems must be able to handle and
complete requests while reacting under real-time con-
straints to environment modi�cations.

� Survivability: Systems that evolve in an hostile envi-
ronment must deal with possible failures. Thus they
must use fault tolerant mechanisms and possess dy-
namic recon�guration capabilities.

� Safety: Agent deployment must guarantee a safe be-
havior in respect to both other agents and human
beings.

MAS allows the design of global intelligent behaviors
modeled through symbolic and logical representations
(HJ96; WJ94). For instance, it is possible to formally
specify how several agents can collaborate to perform a
global "goal oriented" mission or to perform dedicated
speci�c actions using a limited set of both discrete and
continuous resources (payloads, energies, processing el-
ements, . . . ). The use of di�erent forms of logic, sym-
bolic reasoning and arithmetic inference provide vari-
ous ways to model di�erent problems. However bene�t
of these results is limited due to highly combinatorial
explosion and complex collaborative behaviors. Thus
decision making and operational capability is restricted
if the implementation is only based on simple heuris-
tics.
Those combinatorial problems have been widely investi-
gated in the Constraint Programming (CP) community.
Stemming from logic programming, integer and math-
ematical programming, Constraint Logic Programming
(CLP) languages are recognized as powerful tools to
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cope with di�cult and large combinatorial problems
(DHS90; CL96; GH99). Underlying models of the ap-
proaches presented below could be expressed using a
CLP language based on the simplex algorithm (Col87)
and other results from integer and linear program-
ming (such as branch and cut (PR91)) but the solving
method would be restricted to a linear existential part
of the constraint language. In addition, memory space
explosion prohibits the use of 0�1 modeling techniques.
In contrary, CLP o�ers a higher compositionality to
express and solve complex NP-Hard problems by sepa-
rating declarative and operational semantics de�ned on
�nite parts of R andN with all their classical operators.
On the declarative side, those constraint languages en-
able us to model several related complex problems with
a slight loss of completeness. On the operational side,
dedicated search operators can be speci�ed in order to
design global search strategies (CL96). Furthermore,
addressing task scheduling and multiple resource alloca-
tion problems, recent results emphasized the e�ciency
of those approaches (DHS90; VSD95; Jou95; VSD95;
CL96; GH99). In this paper, we consider a spacecraft
constellation as a multi-agent system. In order to max-
imize the �nal system e�ciency, we investigate how
planning under operational constraints can be modeled
and related to the MAS behavior through a constraint
programming approach. This necessitates considering
at the same time several NP-hard sub-problems such
as motion planning, collaboration constraints, observa-
tion and orbit allocation. The CLP properties o�er a
more compositional, generic and exible way to sepa-
rate model's expression from search strategy.

Background
Formation Flying Mission, (for example, a deep space
or earth observation mission), can be characterized by a
set of global goals to achieve with the delivery of mission
data products. A goal is for example interferometry or
stereovision from in-ight combined observations with
multiple sensing resources (such as cameras distributed
on several satellite platforms , . . . ).

Space mission

We will consider a spacecraft constellation which for
an operator submits mission goals with timing con-
straints. The constellation is composed of a �xed num-
ber of spacecraft (four for instance). Spacecraft y in
formation, very close from each other (a few tens of me-
ters). Each spacecraft is represented by a platform with
Inter-Satellite Link (ISL) capability, and by a payload
(synthetic aperture radar, spectrometer, . . . ).
In order to insure exibility, availability and perfor-
mances requirements, the constellation can be divided
into sub formations that will simultaneously achieve
distinct observations from di�erent orbits. Spare satel-
lites might also be needed. Thus separating and/or
combining observation maneuvers within the formation
are part of the global mission plan. Consequently, ex-
ibility of the platforms depends on the MAS global &

local planning capabilities that control their roles (op-
eration and con�guration in hard real-time, from pre-
dicted or unpredicted discrete events).

A Multi-agent approach

Global operation planning over the whole formation
must always be safe for the mission, while local satellite
control insures survivability. In our approach, when the
local control task fails or an unexpected event occurs,
an emergency procedure is triggered to secure the for-
mation and a new plan is generated. It appears to be
a suitable technique to dynamically combine and allo-
cate various discrete event control locations levels and
criticalities within a global planning.
Spacecraft constellation as a category of MAS
We assume that the constellation can constitute a sin-
gle formation ying or be split into several ones. The
constellation is represented as a MAS, composed of a
set of collaborative cognitive agents, each one associ-
ated with a spacecraft. At any time, only the leader
spacecraft of a formation can generate a global mis-
sion plan while the others are considered as reactive
agents. Thus one formation can be seen as a reactive
centralized architecture. However, a set of formations
has to satisfy collaboration constraints de�ned below,
so that when the constellation is divided into several
formations, the associated MAS behaves as an hybrid
deliberative architecture (HJ96).
Action planning We assume that mission autonomy
is mainly provided by the on-board system. We are
considering in this section only actions and underlying
constraints a�ected by the mission goals. Actions under
consideration are discrete actuations for orbit manoeu-
vres, observation, separation and/or reconstitution of
formations.

Collaborative Policy At the low level, to achieve
an increased survivability, the collaborative behavior of
the MAS framework includes emergency actions that
place the constellation in a secured state. If this topic
is not under the scope of this paper, it necessitates the
computation of a new plan as the previous plan may be
no longer feasible after an emergency has occured. At
a higher level, a long term collaborative behavior must
also be considered by the plan. It speci�es how plans
from separated formations are compliant. At a mini-
mum, the collaborative policy states that every space-
craft of a given formation obey the leader, and that
formations have to be assembled in a given orbit, in a
speci�ed time window.
Coordination constraints Chaining orbit changes
and observations requires scheduling on-board activi-
ties in a compliant way with the formation plan. Thus,
we have a local and a global level of coordination. In
our model, we consider recon�guration tasks and action
execution supported by operational modes. Coordina-
tion constraints are solved at the planning level.
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Model-based planning

In our approach, we consider the planning function as
solving a set of constraint-based combinatorial prob-
lems expressed as MAS or operational models like col-
laborative policy, altitude or observations.

CP and model-based computing A Constraint
Logic Programming language can be viewed as an ex-
tension of Logic Programming where uni�cation is re-
placed with constraint satisfaction. Logical predicates
can be constraints interpreted in a mathematical alge-
bra (JL87; VSD95) which is over the �nite domains in
our context : fP(R);+;�; �; >;=g. Such a language
enables predicates composition through logical opera-
tors and quanti�ers. This leads to a more understand-
able, compositional and modular problem representa-
tion.

Model based computing is a practical way to take ad-
vantage of those CLP properties (Jou95; AG98). The
modeling method (Jou95; GH99) extracts and adapts
invariant of each problem by a recursive decomposition
until a tractable expression can be formalized. Those
formal expressions involve mathematical variables and
constrained predicates that represent respectively the
problem combinatory and its invariants. So doing, the
resulting global problem is represented with di�erent
related and heterogeneous models. Relations between
models are conjunctions of constraints that maintain
the global consistency by propagating local solutions
between models. The distinction between the problem
formulation and the solving facilities allows to �nd so-
lutions for various goals automatically.

Model based computing & constellation plan-
ning In the following we decompose the planning
problem in di�erent sub-problems. Thus, the space-
craft position and velocity are decomposed through path
planning, altitude and the timing models. Therefore
by combining solutions with classical orbitography, it is
possible to extract attitude, positioning and speed along
the plan. In fact combination of numerical computa-
tion and symbolic reasoning is essential in autonomous
systems (WN96). For instance, we still have to pre-
pocess orbitography functions before solving the plan-
ning problem. Moreover, the planning also satis�es col-
laborative and coordination models.

Path planning using graphs

Each orbit is interpolated by a set of navigation points.
Transfers are allowed between the di�erent orbits in
speci�c conditions de�ned on transition points. The
very simpli�ed orbit interpolation described above al-
lows us to project orbits in an oriented 1-graph G =
[X;U ], where the set of vertices X represents naviga-
tion points and the set of edges U represents orbit's
arcs.

Event based navigation model

We de�ne a time horizon h 2 N that bounds the max-
imum length of a plan in event time. We duplicate the
graph according to h and event time to model trajec-
tory evolution through time de�ning a set of graphs
fG0; G1; :::; Ghg, each one connected to its immediate
immediate neighbor in the event time by adding to each
vertex an edge to its corresponding vertex at the next
event time occurrence. The costs of additional edges
are �xed and equal zero.

At each vertex x of the graph G, we associate the
set !(x) of connected edges and a function d: 8x 2
X; dx() : f0; :::; hg ! Q where dx(j) represents the
operational time on vertex x in the event time j. If
dx(j) = 0 the formation is not on the vertex x at the
event time j, otherwise the formation is on the vertex
x at operational time dx(j) in event time j.
Identicaly each edge u of the graph G is associated to
a function eu: 8u 2 U; eu() : f0; :::; hg ! f0; 1g where
each eu(j) represents the use of the edge u in the event
time j. If eu(j) = 1 the path uses the edge u in the
event time j, otherwise the edge u is not used in the
event time j. This model is solved by instantiating
dx(j) and eu(j) for each time event j. The graph Gh is
extended using additional edges and vertex in order to
de�ne a circuit between two points. This allows us to
express paths constraint along the graph, as shown in
the following models.

Path consistency model

On each vertex of the graph, the �rst Kirsho� law must
be veri�ed, stating that the sum of the incoming ow
must equal the sum of the outgoing ow (constraint 1).
A ow of capacity less or equal to 1 insures a path
consistency along the graph edges. However, this well-
known model (GM95) in Operation Research has to be
extended to �t the event time representation. For each
vertex x 2 X we respectively de�ne sets !+(x); !�(x)
of incoming and outgoing edges.

8x 2 X;
X

u2!+(x)

hh�1X
j=0

eu(j)
i
=

X
u2!�(x)

hh�1X
j=0

eu(j)
i
(1)

This constraint de�nes the global ow over the extended
graph Gh and also states the connectivity of the path
over the graph.

Transition Constraints

Now, the operational times have to be consistent with
the ows by de�ning a supplementary constraint (2) for
transition over edges in U :

8 u =
�!
xx0 2 U; 8j 2 f0; :::; h� 1g;

eu(j) = (dx(j) 6= 0) ^ (dx0(j + 1) 6= 0) (2)

This constraint states that an edge
�!
xx0 can belong to

the path in the event time j if and only if the path goes
through the vertex x at event time j and through the
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vertex x0 at event time j + 1. Finally, constraint (3)
speci�es that obviously, a route cannot use more than
one edge for each time event:

8j 2 f0; :::; h� 1g;
X
u2U

eu(j) � 1 (3)

Altitude model

For each time event j and each spacecraft of the constel-
lation we associate a discrete altitude slot as a global
resource using a vector h(j) 2 f0; 1gn of 0�1 variables.
The constant n is the number of possible slots. At the
time event j, a spacecraft will be located at the altitude
slot k if the kth component is set to hk(j) = 1. Thus,
we impose 8j;

Pn

k=1 hk(j) = 1 to insure the spacecraft
belongs to a unique altitude slot at any time event.
Each slot represents an interval which corresponds to a
minimal perigee and a maximal apogee such that two
orbits belonging to two distinct slots cannot overlap .
The model also gives the travelling duration �u(j) 2 Q
required to cross an edge u according to the initial and
�nal altitudes at the time event j. Solving the alti-
tude model necessitates �nding the appropriated slot
for each time event while satisfying the constraints de-
�ned hereafter. First, when the spacecraft does not
change its altitude, the constraint (4) expresses the
travel duration across an edge thanks to a linear func-
tion. Second, when the spacecraft altitude changes, the
constraint (5) approximates the travel duration across
an edge using a linear combination of both starting and
destination durations.

8j 2 f0; :::; h� 1g = h(j) = h(j + 1))

9
�!
xx0 2 U=dx(j) > 0 ^ dx0(j + 1) > 0

^ ��!
xx0

(j) = h(j)� ��!
xx0

(4)

8j 2 f0; :::; h� 1g = h(j) 6= h(j + 1))

9
�!
xx0 2 U = dx(j) > 0 ^ dx0(j + 1) > 0

^ ��!
xx0

(j) = ��!
xx0

h(j+1)���!
xx0

+�0�!
xx0

h(j)���!
xx0

(5)

In both constraints, the constant vector � 2 Qn repre-
sents the time duration required to cross the edge for
each possible altitude. The resulting time duration is
given by the variable �(j). The two constant scalars
�; �0 2 Q � Q allow to approximate the time duration
for changing orbits. Those constants can be prepro-
cessed using traditional orbitography. This model illus-
trates the principles of modeling a set of elements (edges
between di�erent orbital locations) by taking advan-
tage from problem's regularities and symetries instead
of dealing with explicit set of elements. Nevertheless
additional edges or more complex constraints can be
de�ned to model non-regular orbital behaviors.

Timing and Observability constraints

For a given event time j, the value of dx(j) depends
on the operational time dx0(j � 1) on the preceding
vertex x0 in the path and the necessary time to go

from x0 to x. Then, if u =
�!
x0x 2 !+(x) is the edge

that go from x0 to x in G, we can state that if this
edge belongs to the path, then the operational time
dx(j) is de�ned as dx(j) = ��!

x0x
+ dx0(t� 1), otherwise

dx(j) = 0. By extending the preceding relation to the
whole edges in !+(x), we de�ne dx(j) using a maximum
on (�u + dx0(j � 1))� eu(j � 1) in the preeceding event
time for all u 2 !+(x).
For an observation zone, we have to specify that the
path must include the travel of this zone in a speci�c
operational time window. Moreover, this zone may be
observed from several di�erent orbits (i.e. several ver-
tices of the graph G), and possibly with discrete se-
quences of operational time windows. In the follow-
ing, a vertex x of G corresponds to a possible obser-
vation of a location in the operational time interval
[tmin; tmax] if it belongs to a triplet � = (x; tmin; tmax).
A discrete observation window of a speci�c location
from various observation points can then be repre-
sented as a set � of � involving the same vertices x:
� = f� = (x; tmin; tmax) j x 2 X; (tmin; tmax) 2 Q2g
According to constraint (6), a necessary observation of
a zone � requires that the path contains at least one
travel onto vertex x = (x; tmin; tmax):

8�; 9� = (x; tmin; tmax) 2 �;

9j 2 f0; :::; hg = (dx(j) � tmin) ^ (dx(j) � tmax) (6)

Collaboration model

To maximize the use of the ying formation, accord-
ing to the availability and performance requirements,
the model allows us to divide the formation into several
sub-formations . We assume that a plan is composed
with a set of several separation steps between the con-
stellation and formations and one assembling step at the
end of the mission. The set of spacecrafts is denoted S,
while a formation is denoted as F . A leader spacecraft
of the constellation is denoted S 2 S. A spacecraft
s 2 S is separated (resp. assembled) at the event time
jssep (resp. jass). In the constraints exposed hereafter
we extend our notation to introduce quanti�cation on
spacecrafts.

Separating and assembling spacecrafts

We consider a single separation date for each spacecraft
along a plan horizon. Before separation, the spacecraft
is controlled by a leader and thus follows the same route
at the same altitude according to constraint(7):

8s 2 S;8 j 2 [0; : : : ; h] = j � jssep 9x 2 X = dSx (j) > 0

) dsx(j) > 0 ^ hs(j) = hS(j) (7)

In order to maximize safety between spacecrafts dif-
ferents routes always corresponds to di�erent altitude
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slots. Thus we relate collaborative model to altitude to
ful�ll anti-colliding requirements:

8s 2 S;8 j 2 [0; : : : ; h]; j > jssep ) hs(j) 6= hs(j) (8)

Solving the collaboration problem requires us to instan-
tiate the variable jssep for each spacecraft. At least, with
constraint (9), all the formations have to join in orbital
rendez-vous de�ned by the variable jass:

8s 2 F ;8s0 2 F 0; hs(jass) = hs
0

(jass)

^ 8 x 2 X; dsx(jass) = ds
0

x (jass) (9)

Consistent behavior inside a formation

The collaborative behavior requires us to solve con-
straints inside the same formation. After a separation,
a spacecraft of a formation remains at the same altitude
slot, this leading to constraint (10):

8s 2 S;8 j 2 [0; : : : ; h]; j > jssep ) hs(j) = hs(j + 1)
(10)

Moreover, if two spacecrafts belong to the same forma-
tion, they have the same separation date as well as the
same route and altitude after a separation.

Coordination model

The planning function involves a coordination model
for a given agent or for a whole formation. For each
vertex of the graph and for each time event, a space-
craft is in a given operational mode. If the modes are
di�erent between two vertices of the same edge, then a
recon�guration task is required. The operational mode
of a spacecraft s 2 S, at the time event j 2 [0; : : : ; h]
for a given vertex x 2 X is denoted Ms

x(j).

Local coordination

Along the plan, some of the modes are imposed by the
vertex type, others have to be solved by the planner. In
any case, the time taken to travel across the edge must
be greater than the time taken to locally recon�gure a
given spacecraft (constraint 11):

8
�!
xx0 2 U = e�!

xx0
(j) = 1 ^ Mx0(j + 1) 6=Mx(j)

) dx0(j + 1)� dx(j) � C(Mx(j);Mx0(j + 1)) (11)

The predicate C(M;M 0) corresponds to the time taken
to recon�gure the spacecraft between mode M and
mode M 0. It is statically computed and remains in the
agent knowledge.

Global coordination

As separating and assembling actions are executed com-
monly we state that all the operational modes have to
be equal to a speci�c mode during the separation. An
analog constraint �t for the assembling action. Using
this approach it is possible to represent complex con-
�guration and compatibility problems. Even those are
not within the scope of this paper.

Solving the planning problem

On the modeling baseline, many kinds of goals can be
investigated. It is possible to search for a plan that sat-
is�es all the model constraints, to complete an existing
partial plan or to optimize an objective function cor-
responding to an applicable trade-o� in several ways
(for example insuring availability by maximizing the
number of spare spacecraft or minimizing the overall
completion time).

Automatic Solving Using CLP Language

To solve the goal, a global control strategy has to be de-
signed. We use Concurrent Constraint operators over
Finite Domains (CC(FD)) (VSD95) as well as domain
heuristics. To insure the consistency between model so-
lutions, and to reinforce the concurrency between the
solving processes, CC(FD) o�ers the powerful control
operators Ask & Tell. The satisfaction operator Tell
states a constraint to the solver and the entailment op-
erator Ask checks if a constraint is already satis�ed. At
the search process level, the Tell operator is used to
exchange partial solutions between models through re-
lations. When two partial solutions are not consistent,
the system generates a backtrack event. The Ask oper-
ator is used for the synchronization of the global search.
Finally using those operators, global solving strategies
including domain heuristics are designed to control the
composite global search over models. An experiment
has been developed using the Claire language (CL96)
and the Finite Domain Eclair library (GS99) based on
CC(FD) operators. Activated from a simulation frame-
work (running on a Ultra Sparc Workstation), this pre-
liminary implementation can handle up to 6 spacecrafts.

Conclusion

The pertinence of using Constraint Model Based Pro-
gramming for specifying and solving the complex prob-
lem of a Multi-Agent plan has been shown. We give
a better alternative to heuristic-based behavior of tra-
ditional multi-agent planners and open a new way to
tackle complex cooperative behaviors. Moreover, this
work highlights the feasibility of the approach for solv-
ing spacecrafts formation plans, by taking advantage
of a more complete speci�cation and by allowing the
concurrent use of di�erent models. However, models
have to be validated according to their level of granu-
larity and their quality of representation. Continuation
of this work should focus on search strategies, satisfying
properties like anytime and real-time.
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Commentary, regarding \Automatic Planning for
Autonomous Spacecraft Constellations"

Mark Boddy
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Summary of paper

In the paper \Automatic Planning for Autonomous
Spacecraft Constellations," the authors discuss a spe-
ci�c approach to the problem of integrating relevant
lower-level concerns (primarily continuous dynamics of
various sorts) with higher-level planning functions for
spacecraft constellations. Despite the title, the paper
does not describe a planning system, discussing instead
a speci�c proposal for the kinds of models on which
planning should be done.
The main point of the paper is that using constraint-

based models, in particular CLP, for the represen-
tation and solution of high-level autonomous control
problems|\planning under operational constraints,"
in their words|has speci�c bene�ts for spacecraft con-
stellations. In particular, this approach permits the
integrated, explicit representation of low-level, contin-
uous constraints derived from orbital dynamics (for
example), mixed discrete/continous representation for
various types of resources (power, data storage space,
etc.), and discrete constraints representing speci�c
goals, or the assignment of discrete domain elements
(individual spacecraft, e.g.) to satisfy some need.
Furthermore, the ability to integrate these di�erent
types of constraints, coupled with the ability to com-
pose constraint problems, means that a local solution
of the planning problem for one spacecraft is simply
a subset of the overall solution. Finally, there are
all the usual advantages claimed for CLP approaches
(modelling generality, declarative semantics, separat-
ing search from problem statement, and so forth).
This work does not involve \planning" at all, in the

classical AI sense of the term. The models constructed
reect constraints upon valid plans, but there is no
search through the space of valid plans, rather an as-
sumption that any solution of the CSP will be accept-
able. I do not regard that as a problem, rather as a
potential misunderstanding to be cleared up, and as
a place where further work is needed. The main con-
tribution I see in this paper is that it argues for the

use of CLP methods within multi-agent systems, and
provides some examples to validate the proposed ap-
proach.
The authors provide three examples of constraint

classes. The �rst class covers the expression of the
dynamics of individual spacecraft, speci�cally motion
planning in an orbital environment, with timing and
positional constraints applied to speci�c actions (ob-
servations). The second class of constraints discussed
are for coordinating multiple spacecraft within a for-
mation, for example in coordinated orbital manou-
vers. The third class, called a \coordination model" by
the authors, covers changes in operational modes both
for single spacecraft and synchronized across multiple
spacecraft. This last class looks very much like a spe-
cial case of a more general expression of resource usage
and interdependent operational states.

Related issues

There are three areas of current work which intersect
with this in interesting ways, illuminating or extending
some aspect of the proposed approach.

Hybrid systems

The way in which I am most sympathetic to this work
is that it has as a basic thesis the notion that hybrid
constraint representations should form the basis for
constructing, analyzing, and executing models of the
operations of complex systems.
Necessary as abstraction is, there are many places in

the real world where an abstraction that moves from
continuous to discrete with increasing abstraction is
not helpful. Of course, there are historical reasons, es-
pecially within AI, why there has been a bias in term of
abstracting towards something like a propositional rep-
resentation. Furthermore, these abstractions worked,
sort of, for robots wandering down hallways, because
the problems were stated such that all the relevant
continuous detail could be buried in the lower level,
with the occasional exception of duration. While it
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does matter whether the robot can �t through a given
door, or navigate successfully down a corridor, precise
clearances are not important. Locations can frequently
be abstracted to a graph of discrete locations.

For spacecraft, as in many other domains, these
simpli�cations will cause problems. Setting a state
variable corresponding to whether a spacecraft is \at"
Jupiter or not is not very helpful. It would be much
better to know the orbital elements, especially for plan-
ning out some sequence of operations (close enounters
with natural satellites, for example). Similar argu-
ments can be made for decision-making involving tran-
sition times (rotating an instrument platform), actions
with their own continuous dynamics, or resource mod-
els involving material or energy ows.

In domains where continuous dynamics are impor-
tant in this way, there can be an interesting inversion,
in which the most sophisticated continuous models are
actually employed at the highest level of abstraction.
My imperfect understanding of mission planning for
spacecraft is that the orbital models used in preight
mission planning are considerably better than any used
for enroute autonomous navigation. The same inver-
sion applies in other domains. In chemical manufac-
turing, for example, medium-range production plan-
ning (including planning the purchase of rawmaterials)
usually involves the use of very detailed kinetic models
of the reactions involved in chemical processes. These
models are frequently tailored to individual pieces of
equipment in a given plant. This level of planning ab-
stracts away individual activities and operations (the
discrete part of the problem), and concentrates on get-
ting right the continous dynamics and resulting ma-
terial balances. Once that has been done, the plan-
ning and scheduling of individual operations can be
accomplished (within their own sets of continuous con-
straints). Finally, the individual activities are turned
over to operations and executed using control models
that are rarely more complex than is required to take
a target setpoint (temperature, pressure, owrate) and
determine a gradient and the resulting control action.

Over the past few years, work on hybrid systems,
particularly within the areas of automatic control and
real-time systems, has grown and evolved to the point
that it makes sense to talk about a \hybrid systems
community." The results from this community have
primarily been in the areas of synthesizing or analyzing
controllers (or \reactive systems," depending on your
background) for particular problem domains. While in
no way belittling the importance or relevance of this
work, I will at the same time claim that it is of lit-
tle use for high-level decision-making, in particular the
kinds of decisions generally made by or made using

systems doing what we are used to calling planning
and scheduling. The basic problem is that the explicit,
relatively long-term predictive simulation models em-
ployed for planning and scheduling require di�erent
techniques than those used either for traditional con-
trol theory, which only requires a gradient (or at most
a limited predictive horizon), or for system veri�ca-
tion, in which the system's behavior can be veri�ed in
a forward simulation. The property required for e�ec-
tive planning and scheduling is something Tom Dean
once (about 15 years ago) called reasoning about time
\from the side:" the ability to view and manipulate an
entire chronicle at once.

Planning for real-time systems

There are two requirements for planning for real-time
systems where failures are possible. First, timing con-
straints must be taken into account within nominal
plans. CLP approaches, among others, should have
no problem with this. Second, there are timing con-
straints imposed on the system's response to failure.
One shortcoming of the straight CLP approach as pre-
sented here is that the system generates a plan, which
it assumes can be executed. In practice, the course of
events is rarely that predictable. The answer proposed
in this paper is essentially a \sa�ng" behavior, where
the constellation as a whole goes into a safe mode,
waiting for a new plan to be generated.

As has been repeatedly observed, there are situa-
tions in which this form of fault detection and recovery
will have consequences ranging from inconvenient to
disastrous. One instance is orbit insertion (one of the
Cassini scenarios for autonomous planning). Another
arose recently on Galileo, where sa�ng was temporarily
disabled during the IO y-by.

There are several possible approaches to this prob-
lem, most of which have been investigated previously,
none of which is a clear favorite, or for which the last
chapter has been written.

� High level planning with low-level reactive behav-
iors. This approach involves conventional classical
planning on top of an abstract action representa-
tion. These actions are further decomposed within
a reactive planning and execution architecture such
as RAPS or TCA, assuming that both execution fail-
ures and the pixels-to-predicates problem can largely
be handled at the lower level. This approach has the
problems with abstraction discussed above.

� State-based planning with explicit contingencies. In
these systems, plans consist of graphs (or tables) of
states with timed transitions corresponding to either
actions or other events. Correctness is de�ned in
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terms of avoiding failure, and in a secondary sense in
terms of eventually achieving a speci�ed goal. The
essentially Markov nature of these representations
present di�culties for goal-directed behavior (as op-
posed to proving that a goal is reachable), and to the
explicit management of resources over time. The
state-based representation itself is potentially sub-
ject to combinatorial explosion and does not lend
itself to the expression of continuous state parame-
ters. All of these shortcomings are currently being
addressed by various research groups, but I don't
think any of them have been �nally and generally
resolved.

� Contingent \classical" \planning." The scare quotes
around \classical" are because this category could
also include systems like C-Buridan, which employs
a probabilistic action semantics. Those around
\planning" are because it is possible as well to build
an explicitly contingent scheduler, as Bresina and
others did for the APT, for example. The problem
with this approach is the need to reason about (and
generate a plan representing) all relevant contingen-
cies.

� More complex architectures. Remote Agent, as far
as I can tell, employs a complex combination of these
techniques. HSTS constructs plans on an abstract
model which still includes some continuous informa-
tion. The executive takes the abstract actions in
that plan and expands them, assuming that that
expansion will not introduce infeasibilities into the
plan (it does, sometimes). Finally, execution fail-
ures are detected and local responses to those fail-
ures are generated in Livingstone, which attempts
to keep the system in a safe state until some more
general recovery action can be planned for.

Something like the set of tradeo�s involved in RA
will be required of any autonomous embedded system.
The simpler architectures do not provide enough op-
portunity to exploit useful domain structure. Some
questions raised by the approach proposed in this pa-
per include whether the abstractions employed by RA
are the right ones, and how easily RA can be adapted
for coordinated multi-agent operations.

Multi-agent systems

The authors argue that constraint-based representa-
tions form a good basis for multi-agent systems. The
system they actually describe involves one agent gen-
erating a plan for an entire formation, within the over-
all constellation. Coordination between formations is
discussed in terms of a \collaborative policy," with lit-
tle indication that there is any active coordination be-

tween formations. Well and good, and it is already
clear in this situation why a hybrid constraint repre-
sentation makes sense, and why the compositionality
inherent in a CSP formulation is a good thing.

However, there are two ways in which I do not be-
lieve the authors have pushed this as far as they could
and should. First, as discussed above, their \planning"
isn't really planning. A more complex form of search
over something more like a classical planning represen-
tation will add additional requirements and complex-
ity, in ways that would make the current argument
stronger. Second, the authors have taken a restrictive
view of what it might mean to have a constellation
of autonomous spacecraft. In particular, the level of
autonomy provided to the individual spacecraft in a
formation is quite limited. This is somewhat like de-
scribing your hand as a multi-agent system because
you have �ve �ngers, each equipped with their own
sensors, actuators, and reexes.

It would be more interesting, and consistent as an
extension to the approach proposed here, to have the
spacecraft negotiating cooperatively in the execution
of some task, by exchanging commitments expressed
as constraints, possibly within some global plan. In
private communication, one of the authors has framed
this more general view as a problem of distributed solu-
tion of the global CSP, i.e.,. coming up in a distributed
framework with an equivalent answer to the one that
would be found if the entire CSP was solved in one
centralized model. This misses the point, to a large ex-
tent. The interesting questions for distributed systems
involve situations in which, for reasons having to do
with (for example) communication bandwidth or divi-
sions of authority, individual agents are attempting to
come to some kind of global solution that satis�es their
own local constraints (possibly optimizes a local objec-
tive function), within some global set of constraints on
behavior (related to a global plan, for example).

CLP and its limitations

One note of caution regarding what is proposed here: I
do not, personally, believe that CLP solvers are ready
for the kind of industrial-strength use that is required
in a production environment involving broad applica-
tion and extensive re-use and adaptation. There are
two obstacles to be overcome before that happens.
First, these systems must become su�ciently stable.
CPLEX (an LP package now owned by Ilog) is a good
example of a solver that is su�ciently mature to be
generally useful in a production environment. While I
expect some argument on the point, I do not believe
that any more general CLP/CP system is, as of yet. I
do believe that they eventually will be, though in what
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form is still uncertain.
Second, these systems must be su�ciently and ap-

propriately expressive. CPLEX satis�es this require-
ment, though in an odd way. There is a large commu-
nity of people who are very, very good at rendering real
problems in the sometimes very unnatural form of a
linear program. This translation (and for that matter,
the interpretation of the solver's output) is essentially
a black art, but one for which a graduate curriculum
has been developed.
There is no such curriculum broadly available for

model translation and interpretation of solver results
for more general CPs. Such a curriculum is even
more necessary for CPs than for LPs. The range of
modelling choices is considerably larger, rendering the
choice of an appropriate model more di�cult and more
critical. That exibility is exploitable in other ways,
for example in the construction of combinations of
solvers and modelling primitives designed for partic-
ular classes of applications (e.g., Ilog Schedule). Such
systems are even less mature, and their application to
real problems is still a black art. Despite claims to the
contrary, applying such tools to a complex real-world
problem still requires considerable sophistication in un-
derstanding both the underlying machinery and how to
work around their expressive and computational lim-
itations. This is the same set of di�culties on which
\expert system shells" foundered, more than a decade
ago.
None of this should be taking as detraction from

the point of view that constraint-based representations
are a fruitful avenue to explore. My quali�cation has
to do with the assertions that these representations
obviate the modelling problem, or that the current set
of available tools are mature enough for general use.
Nor am I asserting that the authors claim either of
these things, though others certainly have.

What next?

This paper provides a useful �rst step in considering
the application of CLP/CP representations to multi-
agent systems in general and spacecraft constellations
in particular. There is considerable additional work
required, some of which it appears the authors are ac-
tively pursuing but did not have room to put in the
paper. I look forward to further developments.
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Abstract

Mission design engineers identify a spacecraft design
and mission plan that best achieves the mission objec-
tives while staying within cost, mass, and operability
constraints. It is often easiest to evaluate a spacecraft
design in the context of a detailed mission plan. Gen-
erating plans by hand is labor-intensive. We present an
AI planning system that automatically generates and
evaluates mission plans for specified spacecraft designs.
This system has been applied to design problems from
a number of NASA missions.

Introduction
The job of mission design engineers is to identify a
spacecraft design and mission plan that best achieves
the mission objectives while staying within cost, mass,
and operability constraints. We observe that it is often
easier to evaluate a spacecraft and mission design in the
context of activity plans for key mission scenarios. Just
as a simulation allows designers to better understand
how the design artifact would behave, a plan helps mis-
sion designers to understand how a specified spacecraft
design will execute a given mission scenario. For ex-
ample: How many observations will it take? What are
the resource margins? How much slack time is there for
contingencies?
We have developed an automated planning system
that takes as input spacecraft parameters (e.g., space-
craft slew rates, battery capacity) and mission param-
eters (e.g., observation requests, frequency of commu-
nication passes, trajectory). The planner generates a
mission activity plan that achieves the mission goals
while obeying the constraints imposed by the given mis-
sion and spacecraft design (which are a function of the
mission and spacecraft parameters).
This technology enables mission engineers to quickly
evaluate several designs. Engineers can evaluate several
candidate designs against a given mission scenario by
generating plans for each design and automatically eval-
uating them against objective criteria. Engineers can
also use this system for ”what-if” evaluations. They can
see how a given designs performs in the context of a mis-
sion scenario, and then modify the design or mission to
improve performance. For example, a spacecraft may

be limited to ten science images per orbit because of in-
sufficient on-board data storage, even though there are
opportunities for many more. The engineer increases
the memory parameter and generates a new plan to see
if the spacecraft can now take more science images.
This system has performed design evaluations for sev-
eral NASA missions: the Solar Interferometry Mission
(SIM), LightSAR, and Pluto-Kuiper Express. The re-
mainder of this paper will describe the system in more
detail, provide some example trade studies, and discuss
the key scheduling issues and algorithms.

System Architecture

The system takes as input spacecraft and mission de-
sign parameters and a set of scenario goals. From these
inputs an automated planner produces a plan of space-
craft activities that accomplish the scenario goals in a
way that is consistent with the spacecraft and mission
design. The next subsection describes this process in
more detail. The resulting plan is then evaluated with
respect to user-specified objective criteria. The overall
architecture is shown in Figure .

Automated Planning

The core of this system is an automated planning and
scheduling system. We used the Aspen [1] planner,
which has a number of reasoning capabilities we find
necessary for generating spacecraft mission plans. How-
ever, the architecture makes no assumptions about the
planner, so one could easily substitute a different plan-
ning system.
An automated planner, such as Aspen, takes as input
a set of goals and an initial state. It then derives a set
of actions that will achieve the goals from the initial
state. A domain model specifies the available actions,
states, resources and constraints among them. For ex-
ample, a ”take-science-image” action may require that
the spacecraft be in the low-vibration state, occur at
least 30s after turning on the instrument, and requires
20Mb of on-board storage and 10W of power. These
constraints are specified in a declarative language spe-
cific to the planning system. The above constraints
would be specified in Aspen as shown in Figure 2.
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Aspen generates a plan that achieves the goals from
the initial state while obeying the constraints in the
domain model. It does this by a combination of sub-
goaling, goal-expansion, and conflict resolution. Sub-
goaling achieves a desired state by identifying an activ-
ity that achieves the state and inserting it into the plan.
Goal-expansion takes a high-level goal and expands it
into a pre-defined set of sub-goals. Conflict resolution
identifies constraint violations in the plan and resolves
them. For example, the plan may contain more ”take-
science-image” activities than will fit onto the on-board
storage. Aspen might resolve this conflict by removing
some of the images or inserting a ”downlink” activity
that will free up more onboard storage. Aspen uses an
algorithm called iterative repair [6] to perform conflict
resolution.

The domain model specifies the constraints for a
given spacecraft design. The goals specify the mis-
sion scenario. Each spacecraft design needs a differ-
ent model, and each mission scenario needs a different
set of goals. However, the spacecraft and mission de-
signs are often similar in many ways. To avoid gen-
erating new models and goals for each design, we pa-
rameterize them with appropriate design variables. The
user simply specifies values for each of the design vari-
ables, which results in an appropriate model and set of
goals. This allows the designer to explore the parameter
space quickly and easily. It also opens the possibility
of searching that space automatically for an optimal
design. This is an area for future research.

Activity TakeImage {
int target-id;
constraints=
starts after end of turn-instr-on
by [30, infinity];

resources =
storage use 20, Mb
power use 10, Watts

};

Resource storage {
type=depletable;
capacity=100; Mb

};

Resource power {
type=non-depletable;
capacity = 130; Watts

};

Figure 2: Model Fragment
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Activity TakeImage {
int target-id;
int PowerAmount, StorageAmount, InstrOnDelay;
constraints=
starts after end of turn-instr-on
by [InstrOnDelay, infinity];

resources =
storage use StorageAmount, Mb
power use PowerAmount, Watts

};

Figure 3: Parameterized Activity

Some typical spacecraft design parameters are re-
source capacities (battery, on-board data storage, fuel),
operability constraints (how long does it take to warm-
up the instrument, how much data storage does an
image require), and hardware options (use cold-gas
thrusters or a reaction wheel). These variables can all
be expressed as parameters in the domain model.

The Aspen domain language allows parameters in
constraints and activities. An example of a parame-
terized activity is shown in Figure 3. The parameters
are in italics.
The user specifies values for the design variables, and
the parameters in the model are set accordingly. The
mission scenario is specified by a set of goals. Goals are
a set of activities that must appear in the plan, with
constraints on their start and end times, duration, and
other parameters. The user specifies one set of goals for
each mission scenario. The goals have parameters that
can be design variables.

Plan Evaluation

Plans are evaluated with respect to user-specified evalu-
ation criteria. A new evaluation function must be writ-
ten for each criteria. Some typical evaluation criteria
are resource margins, resource usage, and science re-
turn.

Applications

Pluto-Kuiper Express

The planning for mission design (PFMD) concepts were
first applied to a trade study for the Pluto-Kuiper Ex-
press mission. The objective was to compare two space-
craft designs, one with a fixed instrument and one with
a mobile instrument platform (scan platform). The
fixed instrument requires the spacecraft to change at-
titude in order to acquire different targets, which can
potentially restrict the data take opportunities depend-
ing on spacecraft slew rates and conflicts with attitude
constraints imposed by other spacecraft activities. The
scan platform allows the instrument to move indepen-
dently of the spacecraft which could potentially result
in higher science return, but is more expensive. Because

the science return depends on how the science goals in-
teract with the spacecraft operations constraints it is
difficult to compute the relative science return without
generating an activity plan. Plans were generated au-
tomatically for each design and the resulting plans eval-
uated with respect to cost and science return. Detailed
results can be found in [5].

Space Interferometry Mission

The planning for mission design system supported an
orbit trade study for the Space Interferometry Mission
(SIM). The question was whether to use an inexpen-
sive but highly constraining low-Earth orbit, or a more
expensive but less constraining Earth-trailing orbit.
SIM will use a space-borne interferometer to take im-
ages of distant stars with much higher resolution than is
possible with existing telescopes. One of the key scenar-
ios in this mission is a ”grid campaign” where the space-
craft images the entire celestial sphere over a period of
about a month. To minimize the length of the grid cam-
paign, and thereby maximize the science return, the im-
ages must be ordered to minimize the angular distance
between adjacent targets. To avoid damage, the inter-
ferometer must not be pointed within a certain angular
distance (the exclusion angle) of bright bodies in the
solar system, such as the Sun, Earth, moon, Mars and
Jupiter. Over time targets move in and out of exclusion
angles relative to the spacecraft as determined by the
spacecraft orbit and celestial mechanics. For a fixed tra-
jectory, each target can therefore be imaged only during
time windows when it is not in the exclusion angle. In
general the more exclusion windows there are the longer
the optimal tour becomes, but it is difficult to say how
much longer without actually solving them.
We used the Aspen planner to generate a grid cam-
paign for the Earth-trailing and low-Earth orbit cases,
and for different exclusion angles. The objective was
to determine whether Earth-trailing campaigns, which
have fewer exclusion windows than Earth-orbit cam-
paigns, were sufficiently faster to justify the more ex-
pensive orbit. The results, shown in Table I, supported
the decision to use an Earth-trailing orbit. Targets
is the total number of image targets in the campaign,
scheduled is the number of targets that could be taken
(some targets are never visible, or their widows over-
lap so that there is only enough time to take some of
them). The plan duration is the total duration of the
grid campaign as planned, and time/target is the plan
duration divided by the number of scheduled targets.

LightSAR

The LightSAR mission is an Earth-orbiting satellite
with a synthetic aperture radar (SAR). The SAR foot-
print is a rectangular swath over the Earth’s surface.
The objective is to image specified regions of the Earth
(say Greenland) within certain time windows (e.g.,
March to June). To image a region, one must select
a set of rectangular swaths that cover the region. The
available swaths and the time at which each swath can
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Trajectory targets scheduled plan duration time/target
Earth trail 1164 1141 25.23 days 31.84 min
Earth orbit 1164 987 26.78 days 39.07 min

Table 1: SIM Plan Evaluation Summary

be taken depend on the spacecraft orbit and the SAR
beam angle (there are several adjacent beams with in-
cidence angles separated by a few degrees). For ex-
ample, one might be able to image a given strip of
Greenland from 7:00 am to 7:05 am on Beam 5, or
from 7:15 am to 7:23am on Beam 3. Each swath re-
sults in many megabytes of data, which reside on the
on-board recorder until it can be downlinked. The plan-
ning problem is to select beams that cover the desired
regions within the specified time windows without ex-
ceeding the on-board storage.
The design questions are how the on-board storage
constraints and downlink opportunities impact the sci-
ence return. The storage capacity and downlink op-
portunities limit the number of swaths per orbit, and
thus the total science return, but in a manner that is
hard to predict. By generating plans for various storage
capacities, available downlink stations, and goal distri-
butions we can understand that relationship and pick
values that provide the best balance between science
return and cost.
These plans take weeks to generate by hand, but only
minutes with an automated planner. Planning technol-
ogy makes it feasible to explore relationships like this
and thereby improve the design in ways that would oth-
erwise not be possible. We have generated plans for the
baseline design, and are beginning to explore this rela-
tionship in more detail.

Planning Challenges
The planning problems described above are uniquely
challenging. The overall problem has many constraints
that require a powerful planning system like Aspen. For
example, SIM must also consider battery and power
constraints and the need to periodically ”decondition”
the reaction wheel (bleed off excess momentum); Light-
SAR has interferometry pairs, which are pairs of SAR
images that must be take exactly 10 days apart, and
a number of miscellaneous constraints on the instru-
ment, data recorder, and downlink activities. The core
problem is often a combinatorial optimization problem.
For example, the core SIM problem is an instance of
the traveling salesman problem with time windows [4],
and the LightSAR problem is a kind of constrained bin-
packing problem [2]. These often require specialized
algorithms to solve effectively (e.g., [2,4]). General-
purpose planners often solve them poorly or slowly be-
cause they do not have these specialized data structures
or algorithms.
We addressed this problem by mapping an abstrac-
tion of the planning problem to the core combinato-
rial optimization problem, and solving that core prob-

lem with a special-purpose solver. The additional con-
straints are expressed in the core problem as a general
feasibility constraint into which the specialized solver
has no visibility. The solution to this problem then
guides the planner in solving the overall planning prob-
lem. In our experience this approach yields high-quality
solutions within reasonable computational bounds (a
few minutes to a few hours, depending on the problem).

Conclusion

It is often easier to evaluate a spacecraft design in the
context of a mission scenario. We have developed a
planning system that automatically generates mission
plans for specified designs. The system can generate
scenario plans in minutes that would take designers
weeks to generate by hand. This allows designers to
more quickly explore the design space and to see inter-
actions between spacecraft design and operations that
would be difficult to identify by other means.
This system has been applied to design problems for
a number of spacecraft missions and has met with en-
thusiasm from the mission design engineers.
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Abstract 
The paper Automated Planning for Spacecraft and Mission 
Design by Smith and Stebbins presents the idea of using 
automated scheduling in the design phase rather than the 
operations phase of a spacecraft mission.  This raises a 
number of interesting questions. 

Introduction 

The use of automated planning and scheduling tools for 
spacecraft has traditionally been restricted to the 
operations phase: the flight operations team determines a 
set of goals for the spacecraft and use a planner to 
generate a plan to achieve the goals.  The Smith and 
Stebbins paper presents the idea of using a planner in the 
design phase to evaluate potential spacecraft designs.  
This paper comments on the proposal, in terms of the 
nature of the simulation environment in which plans are 
evaluated, the choices for design optimization techniques, 
and the very need for mission plans. 

Simulation Environment 

In their introduction, the authors say how simulations and 
plans are both used to gain information about a spacecraft 
design.  Clearly, one is not much good without the other: 
only with a high-fidelity simulation of a realistic plan can 
we gain information. If we can achieve certain guarantees 
about the results of simulations, then simulation can 
become a more integral part of the design process, as 
proposed, for example, in NASA’s Intelligent Synthesis 
Environment (ISE) program.  Without the guarantees, 
simulation can only be a heuristic aid. 
 
Note that the simulation may miss important interactions.  
For example, it may consider only the topological 
connections of spacecraft components, and thus fail to 
point out flaws resulting from thermal or electrical 
interference between two components that are placed too 
close together.  The designer needs to know what sort of 
interactions the simulation will catch and what sorts it 
will not. 
 

A simulation run that verifies nominal operation is useful, 
but is not sufficient for verifying a spacecraft design.  We 
want our spacecraft to be robust under failure, and that 
requires simulations of low-probability failure events.  
One approach is to explicitly introduce hardware failures 
of various kinds into the simulation of a mission, and 
report the results over a suite of failure conditions.  A 
more ambitious approach is to have a model of failure 
probabilities and run the simulation with the possibility of 
failure at every time step.  The accuracy of this approach 
can be improved by using likelihood weighting to 
artificially over-sample the low-probability failures. 
 

Optimization 

One exciting possibility mentioned in the paper is to use 
the planner and simulation environment to guide a search 
through the space of spacecraft designs in an attempt to 
optimize the design. This raises the question of what 
communication is allowed between the planner, simulator, 
and optimizer modules.   
 
It is certainly possible to do optimization without any 
communication between modules other than their 
advertised inputs and outputs. Pick a point in the space of 
design parameters, evaluate it by running the simulator on 
one or more missions, and measure the resulting 
performance.  Repeat on other design points (guided by 
the performance measure of previous points) until a 
sufficiently high-scoring design is found.   
 
However, it may be possible to do much better if the 
modules are allowed to communicate more deeply.  For 
example, suppose the planner is forced to make a decision 
because of a resource limitation imposed by a design 
parameter (for example, insufficient power to perform a 
maneuver). The planner could record this limitation, and 
suggest to the optimizer that a future trial be attempted in 
which the power parameter is set just high enough to 
allow the maneuver.  Alternatively, if the planner is 
capable of representing conditional plans, it could do so at 
this point, with a condition based on the designed power 
level.  Equivalently, the simulation could be split into two 
paths with different power level values, and both paths 
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could be followed.  One would need to take care in 
introducing conditionals or splits, so as not to end up with 
an exponential run time. 
 
Another question is what kind of optimization technique 
to use.  There are a wide variety of options: hill-climbing, 
simulated annealing, genetic algorithms, tabu search, 
linear programming, etc.  Which is best?  Does the ability 
of the Aspen planner to introduce special-purpose 
combinatorial solvers come into play in the choice? 

Who Needs Mission Plans? 

If a spacecraft has been designed and verified using this 
approach of simulation and planning, we end up with a 
different view of what the spacecraft does.  Rather than 
looking at the spacecraft as being capable of executing the 
set of individual commands that are determined by the 
flight operations team to achieve the mission plan, we can 
begin to look at it as capable of achieving mission goals, 
within the design space parameters. This opens the way 
for an operations phase that matches the design phase in 
the way automated planners are used to command the 
spacecraft. 
 
This also raises the question of whether the planner 
should be located onboard or on the ground.  If an 
onboard planner has the same inputs as a ground-based 
planner, then uplinking a goal rather than a sequence of 
commands can be seen as a form of data compression: the 
goal is a compression of the possibly large conditional 
plan that the goal generates. If an onboard planner has 
access to additional or more up-to-date state information 
that the ground-based planner does not have, then we 
have a situation where the plan that would be generated 
and executed onboard is different from what the ground 
operators anticipated.  For this to be acceptable would 
require great confidence in the level of testing and 
analysis done in the design phase. 
 
There is a compromise between onboard and ground-
based planning, in which a certain level of control is 
allocated to onboard processes – a kind of heightened safe 
mode in which the spacecraft can recover from a variety 
of problems – and the remainder is determined on the 
ground.  This approach too would depend on thorough 
testing and analysis, starting in the design phase as Smith 
and Stebbins envision. 
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Abstract

The NPAS is an advanced mission planning tool set
utilized by CSOC personnel to forecast space and ground
network loading in NASA’s telecommunications
commitment process for new LEO/NEO customers.  This
is accomplished by maintaining baseline network user
telecommunication models, incorporating new customer
support requirements, and generating near operationally
valid planning schedules.  Subsequent analyses are
conducted to assure knowledge of support variations due to
changes in customer requirements, available network
resources, and inter-satellite orbital phasing.  Recent
studies have involved constellations of "inexpensive"
satellites that collectively gather patterns of information
through their planned dispersion.  Results to date have
been favorable with some recommendations for
improvement in storage capacity made.  Expectations are
for an increase in multi-satellite proposals for both
scientific investigation and commercial exploration.

Overview

The Network Planning and Analysis System (NPAS) is a
National Aeronautics and Space Administration (NASA)
developed resource used in advanced mission planning
which forecasts upper and lower limits of expected low
earth orbit (LEO) or near earth orbit (NEO) satellite
telecommunications tracking support through sensitivity
variations in deterministic resource scheduling.
Collectively LEO and NEO orbits at their closest approach
to the Earth’s surface vary from several hundred miles to
several Earth diameters in distance.

As a part of the Space Operations Management Office
(SOMO) Consolidated Space Operations Contract
(CSOC), the NPAS team’s evaluations are an integral part
of the commitment process for accepting new customers
on both NASA’s Ground Network (GN) antennas and
Space Network (SN) relay antennas through aperture and
data flow assessments.  Incorporating new
telecommunications requirements supplied by the
requesting customer into baseline models of

committed/potential customers, the team constructs
composite simulation models that reflect the expected load
on a given network for the support phases in question.
Individual customer supports can be defined as multiple
services and, if necessary, broken down to the satellite
instrument level to allow a complete space-to-ground
assessment.  Evaluations may cover multiple phases of
customer support: launch and early operations, nominal
operations, special in-orbit maneuvers, end-of-life, etc., as
requested by the customer.

Other than antenna loading/aperture availability,
additional constraints are considered as necessary.  These
include data flow and latency requirements that are a
function of ground site data traffic.  To reflect the reality
of NASA schedule generation, establishment of a new
project’s priority by the appropriate NASA resource
management is often one of the first steps in any analysis.
Based on the complexity of the support requirements, this
may include a priority scheme that is multi-leveled.

Resultant assessments are used by the appropriate level
of NASA/CSOC management in reviewing and approving
the Project Service Level Agreement (PSLA) which
documents the agreed level of support over the service life
of the customer.

Methodology

Due to the number of unknowns, completing a meaningful
advanced mission planning evaluation is seldom
straightforward.  The performing analyst typically must
often read beyond the supplied telecommunications
requirements and ask for more detailed information
concerning support duration ranges, timing or patterns of
support, antenna or site priorities, radio frequency
incompatibilities, etc.  A formal analysis is then
performed using analytic simulation models that assist in
defining expected bounds of spacecraft tracking support
for assumed network configurations.  Inadequate network
resources, particularly for constrained sets of ground
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antennas, may necessitate recommendations to search for
alternatives, particularly commercial providers, or
modification of the required support.

The team’s collective experience has shown that
regardless of the care taken in planning a network,
unforeseeable events or factors will ultimately affect the
makeup of the network or modify the currently projected
users’ requirements.  Any attempt to forecast more than
eight years for the NASA Space Network or five years for
the Ground Network with any certainty are efforts in
futility.  Nevertheless, planning in distant timeframes
should be done by applying the range of possible network
resources against extremes in the user spacecraft
population so as to identify support boundary situations.

In many cases, the object of a planning analysis is first
to define a minimal set of supporting antennas and their
earth based location (either on the ground or in
geostationary orbit.)  The second step is to identify the
maximum set of antennas that may be required under a
worst-case scenario.  Worst-case here can mean several
things based on the customer’s requirements, but most
typically reflects a lack of available resources on the
requested primary support antennas due to commitments
to higher priority users.

The shortcomings of forecasting the future must be
appreciated and reflected in analyses by incorporating
possible tracking support bounds as appropriate.  For
example, given any set of missions with uncontrolled
orbits, over time their inter-spacecraft phasing will drift to
unknown deviations.  The importance of considering this
orbital variability, although not linear, will vary directly
with the number of supported spacecraft but inversely to
the number of the supporting antenna apertures.

For any customer phase to be analyzed, it is important
to be able to model each user satellite’s telecommunication
science/telemetry, command, and tracking support
requirements to a degree that allows generation of a near
operationally valid planning schedule.  In addition, a
certain level of support that is close to optimal is highly
desirable, although due to total uncertainties it would be
an unnecessary overkill if excessive resources are required
to attain more than a three to five percent variation from
that value.

Baseline requirements and resource models need to be
maintained for rapid responses.  Experience has shown
that customer requirements sometimes change
unexpectedly based on either changing engineering needs
or science goals.  Projects are slow to update written
requirements, thus direct contact with knowledgeable user

project team members on a periodic basis is important for
accurate baseline models.  In keeping with the possibility
of future changes in support, network sensitivity to
possible requirement changes should be evaluated for
specific support levels, if not for the customer, then for
management insight.

Modeling Parameters and Constraints

User requirements are translated into NPAS model
parameters with the intent of identifying constraint
situations between network resource users and allowing
priority considerations (if any) to resolve such conflicts.
Requirements for a single spacecraft may themselves be
quite extensive when all tracking, telemetry and control
(TT&C) support constraints are considered.  The NPAS
can model user support down to the individual on-board
instrument level and can accurately simulate all up and
down link dataflows.  Most constraints revolve around the
need to satisfy the science and telemetry needs of a
spacecraft over any given interval, such as a day.  Many
spacecraft have the capability to perform command
uploading at the same time (and for same or shorter
duration) as telemetry downloading. The NPAS model
supports complex service assignments of almost any
configuration through the use of prototype events (Levine
and Joesting 1997).

With regard to individual TT&C supports, many
spacecraft have some flexibility in their support duration.
For example, they may allow supports as small as 8
minutes but would prefer supports that are 15 minutes
long.  If shorter supports are all that is available, then the
number and proximity of such supports would be higher
and closer together, respectively, in order to assure the
same total amount of dataflow.  Other users are not as
flexible in their support duration, and as such, may find
larger variations in available network support under
different situations.

Other modeling parameters that may be defined are
quite extensive.  This includes minimum separation
requirements between services of the same or different
spacecraft, special sunlight or darkness requirements on
the spacecraft of its Earth sub-point, user defined ground
or political boundaries, spacecraft antenna pointing
limitations, and mutual interference between spacecraft.

Special Forecasting Considerations

One important uncertainty to consider in any customer
feasibility assessment is the orbital phasing differences
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between users of the same network resources.   Unless a
project controls its satellite through powered maneuvers
on a regular basis, LEO/NEO orbits will drift over time
due to many factors such as solar radiation pressure,
atmospheric drag, etc., such that their actual position
cannot be estimated more than a month or two into the
future.  Such changes in phasing between any two, or
more, users can affect their ability to be supported on the
same resource.  Analyses have shown that this effect is
more significant for ground based antennas than for space
based relay systems due to the shorter view periods and
lack of overlapping coverage; however, for low priority
SN users, this can still affect the expected bounds of
support.

The CSOC team handles the coverage variability
uncertainty by using a Monte Carlo simulation with
random variations applied to those orbital parameters that
are most likely to change.  These orbital parameters
include the mean anomaly, the argument of perigee, and
the right ascension of the ascending node.  Each mission
is analyzed to determine those parameters that are most
likely to vary, and appropriate bounds are established for
random variation in the simulation. The total number of
trials in any individual Monte Carlo simulation is a
function of the number of varied orbital parameters.
However, at a minimum, one hundred deterministic
planning schedules normally are generated for each phase
model in order to establish the range of possible schedule
satisfaction and patterns of support sensitivity to the
varied parameters.  Support commitment analyses should
include consequences of worst-case phasing situations and
occurrence timing among network users.

The key to generating "valid planning profiles" is a set
of scheduling functions that closely match the operational
characteristics of the user community.  Classic forecasting
tools have used modified greedy algorithms to
approximate the network load.  This does not in itself
guarantee a near operationally valid schedule for any user.
For example, regardless of network reliability, some users
actively manage their support schedules, anticipating a
loss of service on any subsequent support.  For those users
who actively manage the science download of their
spacecraft's on-board recorder, it is often the case that they
do not wish to have the recorder exceed more than 50% of
its capacity at any given time.

The NPAS team has built an integrated collection of
scheduling algorithms using heuristics for optimization to
allow complex, meaningful planning schedules to be
generated for user spacecraft as required, down to the
individual instrument level if necessary.  Our methods do
not guarantee an optimal schedule as our goal is to

forecast for each variation modeled a representative
support profile that is within 3% of an operational
schedule. Over time the tools have produced spacecraft
planning schedules that compare favorably to realized
support (Stern, Levine, and Pitt 1994).

Due to user community characteristic differences in
radio frequency, data format, etc., on NASA’s GN, the
amount of effective utilization that can be forecast on
these resources is significantly less that what the Air Force
can achieve on its similar capability RTS Network.  A
maximum utilization reaching only about 50% (including
antenna turn-around time) is all that can be committed to
for any given NASA X-/S-band GN antenna due this lack
of uniformity.  Of course, more load can be added to the
sites during the actual schedule period when that time
comes in the future.  But to analyze a user’s requirements
at a medium to low priority one or more years in advance
requires the effective utilization not to be exceeded if those
users are to actually receive their stated support.

Actual loading on the SN is limited by the inherent
problem of scheduling and resolving conflicts when users
generate their schedules on their own and submit them for
inclusion on a user-by-user priority basis.   For the
resultant actual schedule, conflict resolution is in many
cases a manual process with tradeoffs between users made
in an unpredictable fashion.  The NPAS algorithms have
are designed to simulate the individual user’s initial
requests.  In addition when requirements are not met due
to priority conflicts, special automatic conflict
resolution/priority override options are available to assure
that at least minimum levels of support are met.  The need
to model these overrides is seldom obvious to the
modeling analyst at first and typically requires an
"iterative build" for any particular new customer’s phase
model.  Not only do schedules generated by NPAS have
the ability to accurately forecast network loading,
comparisons of individual NPAS "plans" to actual SN
schedules have shown similar patterns of support (Simons
and Larsson 1994).  It must be noted that it is impossible
to forecast the actual schedule of any user, such as the
Hubble Space Telescope, without knowing the actual
targets of observation/science requirements over the period
in question.  These are unknown even to the project more
than several weeks in advance.

Satellite Constellation Studies

Recent studies have been devoted to forecasting the load
incurred by constellations of numerous "inexpensive"
satellites.  These types of projects involve deploying a
large number of spacecraft that each consist of minimal
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hardware and thus limits how much data can be stored on-
board.  Such a scenario normally means that data will
need to be downloaded to a receiving antenna almost
whenever one is in range of a particular spacecraft. This
can be difficult, however, when the number of satellites in
the constellation is sufficiently large as compared to
available antenna resources.   The objective is to produce a
schedule such that minimizes the data loss experienced
over all spacecraft in the constellation.

One such proposed constellation is the Nanosat
constellation, which can consist of over 100 identical
spacecraft, each weighing 10 kg, deployed into highly
elliptical orbits around Earth.  The apogees range from 12
to 60 Earth radii, and the perigee of each is 3 Earth radii.
This results in orbital periods ranging in length from 1
day for the lowest altitude flyer to over 10 days for the
spacecraft with the highest apogee.  Contact with ground
stations can occur only when the spacecraft is within 5
Earth radii of the station.

In the study, each of the spacecraft in the Nanosat
constellation was modeled as having 864 megabits of on-
board memory into which data is stored at a rate of 1
kilobit per second.  This of course means that the recorder
will be filled to capacity after 14400 minutes (10 days) if
data cannot be downloaded at some interim point.  For the
outermost flyers, whose orbital periods exceeded 14400
minutes, this was indeed the case, and for those spacecraft
we could not avoid losing some amount of data in each
orbit.

However, through the use of NPAS playback requests
the analysts were able to ensure the full requirements
satisfaction of those spacecraft whose fulfillment was not a
geometric impossibility.  For each spacecraft in the
constellation, one generic playback request was created to
manage the filling and dumping of the on-board recorder.
The requests were prioritized to allow spacecraft with
higher altitudes to schedule before those with lower
altitudes could.

NPAS playback schedule requests assisted here both in
the realistic modeling of actual user equipment but also in
managing optimal resource usage for planning purposes.
The result was that the data loss was minimized for those
spacecraft whose recorder capacity was exceeded between
successive station views; the remaining 96 spacecraft in
the constellation, through efficient station and spacecraft
resource management, were able download 100% of their
recorded data.  Recommendations to the project were to
increase the on-board data storage capacity of the few
outer satellites if 100% of science data is required.

A second recent assessment request involved support of
"clusters" of identical SN users in the 2001 timeframe.
Using the multiple access return  (MAR) resources of the
SN Tracking Data Relay Satellite System (TDRSS),
multiple sets of 5 users each desired to receive from 100 to
50 percent continuous coverage based on their type of
operation.  Although the TDRSS contains 5 MAR services
per satellite (for each of 4 nominal first generation TDRSS
satellites in operation), an additional 14 shared MAR
services were proposed.  Each are currently limited to 5
but can actually support 19 MAR services.  This "shared
augmentation" of services would be a fairly simple
modification of the existing ground control equipment.

Four sets of these clusters of users would reside in a
LEO nominally the same as a low inclination Space
Shuttle orbit.  2 sets would be 50% users and 2 sets would
be 100% MAR users.  One set in each group would be
"closely" located and one set in each group dispersed in
orbit around the Earth.  In addition, another 2 sets of 5
each would be dispersed on the ground.  These users
would have only real-time observation and transmit
capability, thus minimizing cost.

This analysis was modeled in a straightforward manner
using the NPAS scheduling option that maximizes
requested support (also minimizes hand-over.)  In
addition, the supplemental shared 14 MAR resources were
constrained using a special network concurrent shared
resources option.  Results were very favorable with all
users receiving 98% or more of their stated support.

Conflict Explanation Utility

One recent addition to the NPAS toolbox is the Conflict
Explanation Utility, referred to simply as the Explainer.  It
was designed primarily to assist NPAS modeling analysts
determine how exactly a new set of requirements affects
the performance of existing elements in a model.  This can
be particularly helpful when the introduction of new
requirements has an indirect effect on a seemingly
unrelated requirement that already exists in the model.

In its most basic form of operation, the Explainer is
designed to assist NPAS analysts determine if a particular
schedule request attained its maximum geometric
satisfaction. If it happens that the geometric maximum is
not reached by the request, the utility helps to determine
what may be hindering the scheduling of the request.
Many times the schedule degradation is due to higher
priority requests that consume resources required by the
analyst’s input request.  Sometimes, however, the poor
performance is due to competing requirements within the
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same request (for example, restricting the spacecraft to
schedule at only one station, but that spacecraft never has
available coverage at the station).  Lastly, the utility also
alerts the user to simple conditions which appear to affect
the scheduling process, for example, a minimum support
time that is too large, or a requested service or antenna
type may not be available at a requested station, and so on.

The utility is most helpful when new requirements are
added to an existing model.  This occurs often and it is not
always clear why a new load on one resource affects the
satisfaction of a seemingly unrelated requirement, for
instance, a mission that is of lower priority but in a
different orbit and that requests a different resource.  This
utility is designed to unravel the chain reaction that occurs
when the scheduling of one request bumps another to a
different resource, which in turn bumps another request to
a still different resource, and so on.  For example, it could
easily happen that the introduction of a new load at high
priority on the TDRSS station at location 174 degrees
West longitude affects a medium priority request seeking
to schedule a TDRSS station at location 41 degrees West
longitude.  It can be a time-consuming effort for an
analyst to trace back through the scheduling process to
determine why this seemingly unrelated scheduling task is
affected in this situation. The Explainer simplifies this
process by automating the conflict backtracking so that the
NPAS analyst can report to the customer with confidence
the cause-and-effect relationship seen.

Furthermore, the Explainer can optionally suggest how
a request might be modeled differently to better utilize
existing resources.  This targeted request is not necessarily
the request initially input by the analyst (the request that
originally could not meet its satisfaction) nor the request
for the new set of requirements: it could easily be one of
the intermediate requests that played a part in the chain.

An NPAS analyst invokes the Explainer once a
schedule run is made and a poorly performing schedule
request is identified.  Since the scheduling of this input
request may have been affected by higher priority requests,
the Explainer reads the modeling information pertaining
to both the input schedule request and all higher priority
requests to build lists of applicable constraints.  An
example of such a constraint would be if this request was
intended to schedule only when the spacecraft was in-
sunlight.  Then the geometric visibility data for all these
requests is processed by the Explainer and schedules with
full tolerance (that is, all valid scheduling choices are
included in the schedule, even if this results in far more
events than desired) are created.  Note that “optimal”
events are identified during this process, and these are
used to determine what the geometric maximum

satisfaction for each schedule request should be.  The
process to this point is what is called the “Geometric
State” construction; it describes what could be scheduled
under ideal circumstances and also includes a list of
alternate selections.

Following this, the “Schedule State” is determined.
This begins when all requests of higher priority than the
input request, in addition to the input request itself, are
fed into the scheduling engine.  As events are scheduled,
the reason why a particular event has been chosen over
another is noted and stored.  For a higher-priority event,
the reason would most likely be due to normal intra-
requirement constraints such as scheduling only when the
spacecraft is in-sunlight, selecting the longest pass, etc.  If
a scheduled event happens not to be one of the optimal
events identified during the Geometric State construction,
then the system tries to determine whether this is due to
constraints imposed by the request upon itself (for
example, a minimum separation from an event it
previously scheduled) or if it is due to a higher priority
request consuming the resources required by the optimal
request.  In the latter case, a “lookup” is performed to
determine what higher priority request events are directly
conflicting with the optimal event for the current request.
Following this, one link of a dependency chain is built
linking the event scheduled by the current request to that
scheduled by the higher-priority request, for each
interfering higher priority event.  Any other reasons why
the current event was chosen (for example, spacecraft is
in-sunlight, the station was the most desirable) are still
noted for the event, but the dependency chain is another
part of the explanation why this particular event was
chosen.

The Schedule State therefore is the result of the process
in which the cause-and-effect relationships are determined
for events of all requests that can affect the NPAS
analyst’s input request.  Once this has been completed,
The Explainer can begin to determine why the analyst’s
input request did not attain its maximum satisfaction.
There are two cases here: one in which a non-optimal
event was scheduled, and one in which no event could be
scheduled in a given schedule period.  In the former case,
the descriptions associated with each event node are
simply reported to the user.  In the latter, the Explainer
follows all links back through the dependency chain for
each possible event in the period. (A schedule period here
might be one orbit or one day, for example).

Once all non-optimal events and non-scheduled periods
are examined for the request, the software determines
which intra-request constraints or higher-priority requests
had the most significant impact on the analyst's input
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request.  Through the dependency chain backtracking,
these impacts could of course be either direct or indirect.

The system can also suggest possible remedies, within
given parameters, which can result in the input request
attaining a more favorable satisfaction.  The parameters
allow the analyst to instruct the system to ignore certain
facets of the model that should not be modified, like the
network architecture or the scheduling of unmovable
events.  The suggestions take into account knowledge of
how the scheduling software operates internally.  For
instance, the utility might recommend that a station
priority list be reordered for some request, or that visibility
events should be sorted in AOS/LOS order instead of by
station priority.

To summarize, the Explainer is helpful to the NPAS
analyst because it provides a full accounting of the
schedule process, indicating why a particular event did
schedule or why none could be scheduled for a given time
span. The analyst can use this information simply as
something to report to the customer, or it can be a starting
point for further model optimization.  The Explainer
assists in this regard as well as it can suggest different
ways that requests in the model can be modified to
maximize the satisfaction of the input request.

Neural Network Application

In response to SN customer representative/management
requests for rapid determination of the ability of baseline
network configurations to support additional users (such
as during a meeting in which the requirements are
originally proposed), the NPAS team devised a neural
network (NN) application.  The underlying neural
network application is a NASA COTS product, NETS
(Baffes 1989).  In constructing a neural network, the
NPAS team identifies several types of customer support
requirements that may be requested.  The executing end
user would choose the requirements closest to those
desired and the resultant expected mission satisfaction and
total network loading (both as percentages) would be
given.

To date, we have determined that the best accuracy
across the multiple SN baselines is to generate a separate
NN for each baselined network model in each model
timeframe.  The design of the system is such that the core
of the system is of minimal size, and the menus and all
associated options are dynamically constructed at run time
from flat database files.  The benefit here is that new
scenarios can be created by the end user and easily
imported into the utility without having to recompile the

software.  This also allows for the rapid construction of a
new NN if any of the component baseline models are
changed.

Due to the inherent CV problem with the GN (covered
before), we have not yet perfected the application of NN in
this area.  There is currently too much flux on the
composition of the GN (for example, the recent addition of
the commercial DataLynx service for NASA Code Y
support) to justify fielding such an application.

Conclusion

Given the trend of higher numbers of satellites on
minimal cost networks, proven and adaptable tools are
required to provide proper feasibility assessments for
advanced mission planning of telecommunications
tracking.  Providing for the inherent differences in
ground-based and space-based antenna systems is
necessary, as is the ability to combine such networks when
required. A knowledgeable team to analyze input
requirements, ask additional questions to bound true
problems, appropriately model, and analyze the phases of
support is requisite for meaningful customer
commitments.
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Abstract 
 
In an effort to adequately plan for the tracking and 
communications support of upcoming space missions, a number 
of methods and tools have been devised to help forecast the 
loading on existing networks.  The need for such accurate 
forecasting is compounded, given the popularity of proposed 
mission concepts that call for the placement of entire 
constellations of satellites in Earth orbit.  Joesting and Larson, in 
their paper, Forecasting Telecommunications Support 
Boundaries for Satellite Constellations Using Deterministic 
Scheduling, discuss some of the challenges that must be faced, 
and present some of their recent experience and tools used in 
tackling the forecasting problem.  Capable methods are indeed 
necessary to establish the nature of the scheduling problems that 
lie ahead, and to suggest ways of re-designing missions to 
minimize conflicts.  Additionally, new technologies must be 
developed and widely implemented to automate the station 
acquisition and telemetry downloading process, if we are to 
meet the spacecraft telecommunications needs of the future. 

 
The Forecasting Problem 

 
As pointed out by Joesting and Larson, the forecasting of 
long range telecommunications schedules of low Earth 
orbiting (LEO) satellites is complicated by imperfect 
modeling of the forces that perturb spacecraft orbits over 
time (e.g. variable drag forces that result from solar 
induced variations in atmospheric density) and the 
resulting growth in orbital position uncertainty associated 
with attempts to propagate spacecraft orbits beyond a few 
weeks.  These orbit uncertainties, when coupled with 
uncertainties in spacecraft true anomaly for pre-launch 
forecasting, typically require statistical means to derive 
time-averaged station coverage profiles. 
 
Thus Joesting and Larson describe the use of the Network 
Planning and Analysis System (NPAS), which relies on a 
Monte Carlo simulation to generate statistical data 
concerning spacecraft coverage profiles and station 
scheduling conflicts.  This approach is similar to that 
implemented in the program LEO4CAST [1] developed 
by the Jet Propulsion Laboratory (JPL) for station 
resource allocation studies.  Other forecasting methods 
that have been proposed include a deterministic technique 

described by M. Lo of JPL, which relies on dynamical 
systems methods to estimate long-term station view 
periods [2].  Relative to simulated data gathered from 
long-duration orbit propagations, Lo’s method has been 
shown to be accurate to within 0.2% for circular orbits 
and within 15% for low eccentricity orbits (e < 0.05).  
While offering advantages in terms of much lower 
computational cost,  Lo’s method, however, does not 
directly address station conflict assessment between 
multiple spacecraft.   
 
 Another useful software tool described by Joesting and 
Larson is the Conflict Explanation Utility, which can 
provide insight into the various factors that influence the 
availability of station coverage for a spacecraft.  When 
used together, all these tools can help NASA assess the 
adequacy of its network resources to meet future 
telecommunications demands.  These tools can also 
suggest changes to a mission’s characteristics (e.g. 
different orbit, antenna size, on-board data storage 
capacity, station complement, etc.) to improve its chances 
of obtaining the communications resources it needs.   
 
The potential for such pre-emptive changes to the design 
of a spacecraft is appealing, in that they could result in a 
decrease of overall network loading, and lead to a more 
efficient use of available resources.  However, for such 
changes to be practical, they must occur very early in the 
design process.  As such, it is important that prospective 
space projects be given access to these forecasting tools 
and allowed to iterate on their mission design, preferably 
with occasional access to guidance from NASA 
scheduling experts.  To that end, a web-based tool, 
accurately configured with an up-to-date station 
complement and mission set, would be most useful. 

 
The Constellation Challenge 

 
Constellations, consisting of multiple inexpensive 
spacecraft in orbit, have been advocated lately as a low- 
cost way of enabling global measurement from space with 
minimal risk posed to the overall mission as a result of an 
individual spacecraft failure.  While these constellations 
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offer intriguing possibilities, they also have the potential 
of quickly overwhelming existing communications 
resources.  Aside from adding a large number of 
spacecraft to future mission sets, constellations composed 
of inexpensive spacecraft will likely be limited in on-
board storage capacity, power, and antenna size --- 
attributes that exacerbate the scheduling problem. 
 
But beyond the station-scheduling problem, there is also 
the hurdle of cost for the support of such large numbers of 
spacecraft.   Given traditional operations methods, the 
resources required to maintain these constellations, in 
terms of station scheduling, commanding, and data 
reception, could dampen enthusiasm for such missions.  
As an example, the cost of operations support for the 
recent Lunar Prospector mission was largely driven by the 
need to maintain 24 hr operator support to ensure the 
nearly continuous tracking requirement for downlink of 
science telemetry.  During a one-month period arbitrarily 
chosen for study, over 30 data transfer anomalies were 
counted which involved problems with station 
acquisition, data transfer, or workstation errors.  In most 
cases, without the active intervention of spacecraft 
controllers and station personnel, significant amounts of 
data would have been lost. 

 
The Role of Automation 

 
To help get around the scheduling challenge imposed by 
the future use of spacecraft constellations, a greater 
reliance on automation is necessary.  Already, spacecraft 
operators have implemented ground stations that can 
automatically acquire and track a satellite without 
operator intervention [3].  Such automation has been 
easier to implement on missions with a dedicated ground 
station and a limited number of common spacecraft.  For 
large networks like NASA’s GN and SN that support a 
wide variety of missions, automation has proven to be 
more challenging, due to the large disparity in tracking 
requirements and spacecraft characteristics.  However, in 
recent years, there have been some successful 
demonstrations of "lights out" station operation using 
NASA’s Low Earth Orbit Terminal with a 3-m antenna 
system, and the Deep Space Terminal with a 34-m 
antenna [4]. 
 
Such progress has indeed been promising; however, 
further steps will probably be necessary to meet the heavy 
telecommunication demands of spacecraft constellations. 
Perhaps the ultimate goal should consist of enabling 
spacecraft to independently request support from 
automatic ground stations.  Using GPS to establish their 
position relative to an onboard database of available 
ground stations, future spacecraft could compute view 
periods at candidate sites along with their required contact 

duration, and request service directly from a station.  
Priority for a given s/c request could be decided by each 
station, based on the saturation level of a spacecraft’s 
storage capacity, or according to the relative importance 
of the data collected, as defined by scientists and 
operators.  Of course such a system would not eliminate 
contention over limited telecommunications resources, 
and it would require solutions to non-trivial technological 
hurdles.  It may ultimately, however, be the direction of 
things to come, given the complexity and costs associated 
with more traditional alternatives. 
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Abstract

zander is a state-of-the-art probabilistic planner
that extends the probabilistic-planning-as-stochas-
tic-satis�ability paradigm to support contingent
planning in domains where there is uncertainty
in the e�ects of the agent's actions and where
the scope and accuracy of the agent's observations
may be insu�cient to establish the agent's current
state with certainty (Majercik & Littman 1999).
We describe zander and then discuss an approxi-
mation technique we are developing that will help
us to scale up our SSat-based technique to large
planning problems. We report results using this
approximation algorithm on random SSat prob-
lems and discuss issues that arise in the application
of this algorithm to SSat encodings of planning
problems.

Introduction

Planning is a critical activity in space exploration
e�orts. Uncertainty in the various domains|
especially partial observability|makes it impossi-
ble to rely on a simple straight-line plan. One ap-
proach to dealing with this uncertainty is to con-
struct a plan as if the environment were determin-
istic, and then replan quickly if the plan fails. If
the uncertainty in the environment is quanti�able,
however, we can use that knowledge to construct a
plan with contingencies so that there is less likeli-
hood of having to replan.
Our work focuses on the latter approach. zan-

der is a probabilistic planner that extends the
probabilistic-planning-as-stochastic-satis�ability
paradigm to support contingent planning in do-
mains where there is uncertainty in the e�ects
of the agent's actions and where the scope and
accuracy of the agent's observations may be insuf-
�cient to establish the agent's current state with
certainty (Majercik & Littman 1999). zander

solves a planning problem by converting it into
an instance of stochastic satis�ability (SSat), a
type of satis�ability problem in which some of the
variables have probabilities attached to them. A
solution to the SSat problem yields a plan that
has the highest probability of succeeding. Initial

results have been very encouraging|zander

operates at state-of-the-art speeds on planning
problems drawn from the literature|and we are
now developing techniques based on this paradigm
that will allow us to scale up to large, real-world
problems. A natural approach is an approximation
technique and, in this paper, we describe e�orts
to develop such an algorithm for solving the SSat
encodings of planning problems generated by our
planner.
We envision two possible applications of our

planning technique (Brooks 2000). First, our plan-
ner has the potential to accept a list of requests
for use of a particular spacecraft, organize these re-
quests into a viable sequence of activities, and con-
vert these requests into input for other elements of
the uplink data system. Second, our planner could
be used as part of an on-board fault protection sys-
tem in a spacecraft. Given a fault condition, the
planner would observe the condition of the space-
craft, plan more diagnostic tests if necessary, create
a contingent plan to correct the fault and, �nally,
replan any interrupted or unexecuted activities and
continue the sequence.
In the remainder of this section, we describe our

domain representation, the SSat framework, and
how contingent planning problems can be encoded
as SSat problems. After a brief description of zan-
der, we describe our approximation algorithm, re-
port results on a large number of random SSat

problems, and discuss issues that arise in apply-
ing this algorithm to SSat encodings of planning
problems. We conclude with an assessment of the
strengths and weaknesses of this approach.

Probabilistic Planning Representation

zander uses a propositional representation for
planning problems. A planning problem is de-
scribed using a �nite set P of n distinct proposi-
tions , each of which may be True or False at any
(discrete) time t. A state is an assignment of truth
values to P . A probabilistic initial state is speci�ed
by a set of decision trees, one for each proposition.
Goal states are speci�ed by a partial assignment G
to the set of propositions; any state that extends
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G is considered to be a goal state. Each of a �-
nite set A of actions probabilistically transforms a
state at time t into a state at time t + 1 and so
induces a probability distribution over the set of
all states. In this work, the e�ect of each action
on each proposition is represented as a separate de-
cision tree (Boutilier & Poole 1996). For a given
action a, each of the decision trees for the di�er-
ent propositions are ordered, so the decision tree
for one proposition can refer to both the new and
old values of previous propositions. The leaves of a
decision tree describe how the associated proposi-
tion changes as a function of the state and action. A
subset of the set of propositions is the set of observ-
able propositions , each of which has, as its basis, a
proposition that represents the actual status of the
thing being observed. The planning task is to �nd
a plan that selects an action for each step t as a
function of the value of observable propositions for
steps before t. We want to �nd a plan that maxi-
mizes (or exceeds a user-speci�ed threshold for) the
probability of reaching a goal state.

Stochastic Satis�ability

In the deterministic satis�ability problem, or Sat,
we are given a Boolean formula and wish to de-
termine whether there is some assignment to the
variables in the formula that results in the formula
evaluating to True. Papadimitriou (1985) explored
an extension of Sat in which a random quanti�er is
introduced. The stochastic Sat (SSat) problem is
to evaluate a Boolean formula in which existential
and random quanti�ers alternate:

9x1;
R
x2; 9x3; : : : ; 9xn�1;

R
xn(E[�(x)] � �):

In words, this formula asks whether there is a value
for x1 such that, for random values of x2 (choose 0
or 1 with equal probability), there exists a value of
x3 : : : such that the expected value, or probability of
satisfaction, of the Boolean formula �(x) is at least
a threshold 0 � � � 1. In our SSat problems, we
will allow blocks of existential and random quanti-
�ers to alternate. Furthermore, we will allow anno-
tated random quanti�ers such as

R
0:2, which takes

on value True with probability 0:2 and False with
probability 0:8. The speci�cation of an SSat prob-
lem consists of the Boolean formula �(x), the prob-
ability threshold �, and the ordering of the quanti-
�ers. In what follows, we will refer to existentially
quanti�ed variables in the SSat formula as existen-
tial variables and randomly quanti�ed variables as
randomized variables .

Encoding Planning Problems

In an SSat formula, the value of an existential vari-
able x can be selected on the basis of the values
of all the variables to x's left in the quanti�er se-
quence. This suggests a way of mapping contin-
gent planning problems to stochastic satis�ability:

encode the contingent plan in the variable ordering
associated with the SSat formula. By alternating
blocks of existential variables that encode actions
and blocks of randomized variables that encode ob-
servations, we can condition the value chosen for
any action variable on the possible values for all
the observation variables that appear earlier in the
ordering. A generic SSat encoding for contingent
plans appears in Figure 1.
The quanti�ers fall into three segments: a plan-

execution history, the domain uncertainty, and
the result of the plan-execution history given the
domain uncertainty. The plan-execution-history
segment is an alternating sequence of existential-
variable blocks (one for each action choice) and
randomized-variable blocks (one for each set of pos-
sible observations at a time step).
The domain uncertainty segment is a single block

containing all the randomized variables that mod-
ulate the impact of the actions on the observation
and state variables. These variables are associ-
ated with random quanti�ers; when we consider
a variable that represents uncertainty in the envi-
ronment, we want to take the probability weighted
average of the success probabilities associated with
the two possible settings of the variable.
The result segment is a single block containing

all the non-observation state variables. These vari-
ables are associated with existential quanti�ers, in-
dicating that we can choose the best truth setting
for each variable. In reality, all such \choices" are
forced by the settings of the action variables in the
�rst segment and the chance variables in the sec-
ond segment. If these forced choices are compatible,
then the preceding plan-execution history is possi-
ble and has a non-zero probability of achieving the
goals. Otherwise, either the plan-execution history
is impossible, given the e�ects of the actions, or it
has a zero probability of achieving the goals.
An attractive feature of this planning technique

is that it is straightforward to add additional con-
straints to the SSat encoding of the planning prob-
lem. This means, for example, that human judg-
ments about activities that must be performed can
easily be enforced.

ZANDER

We briey describe zander, our SSat-based
probabilistic planner. Details are available else-
where (Majercik & Littman 1999). zander must
�nd an assignment tree that speci�es the optimal
existential-variable assignment given all possible
settings of the observation variables. The most ba-
sic variant of the solver follows the variable ordering
exactly, constructing a binary tree of all possible
assignments. Each node in the tree contains a vari-
able under consideration, and each path through
the tree describes a plan-execution history, an in-
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�rst action
z }| {

9x1;1; : : : ; 9x1;c1

�rst observation
z }| {R
w1;1; : : : ;

R
w1;c2 � � �

last observation
z }| {R
wn�1;1; : : : ;

R
wn�1;c2

last action
z }| {

9xn;1; : : : ; 9xn;c1

random outcomes
z }| {R�1z1; : : : ;

R�c4 zc4

the state
z }| {

9y1; : : : ; 9yc3(E[�(x)] � �):

c1 = number of variables it takes to specify a single action (the number of actions),
c2 = number of variables it takes to specify a single observation,
c3 = number of state variables (one for each proposition at each time step), and
c4 = number of chance variables (one for each possible stochastic outcome at each time step).

Figure 1: A contingent planning problem can be encoded as an instance of SSat.

stantiation of the domain uncertainty, and a pos-
sible setting of the state variables. An observation
variable is a branch point; the optimal assignment
to the remaining variables will, in general, be dif-
ferent for di�erent values of this variable.

The solver does a depth-�rst search of the tree,
constructing a solution subtree by calculating, for
each node, the probability of a satisfying assign-
ment given the partial assignment so far. For an
existential variable, this is a maximum probability
and produces no branch in the solution subtree; the
solver notes which value of the variable yields this
maximum. For a randomized variable, the proba-
bility will be the probability weighted average of the
success probabilities for that node's subtrees and
will produce a branch point in the solution subtree.
The solver �nds the optimal plan by determining
the subtree with the highest success probability.

We use three pruning techniques to avoid check-
ing every possible truth assignment. Whenever an
existential or randomized variable appears alone
in an active clause, unit propagation assigns the
forced value to that variable. Whenever an exis-
tential variable appears always negated or always
not negated in all active clauses, variable puri�-
cation assigns the appropriate value to that vari-
able. Thresholding allows us to prune plans based
on a prespeci�ed threshold probability of success
(i.e. �nd a plan whose probability of success meets
or exceeds the threshold probability).

An SSAT Approximation Algorithm

zander performs at state-of-the-art speeds on
problems drawn from the literature (Majercik &
Littman 1999). This is encouraging since there are
a number of potential improvements to zander

that have shown promise for scaling up to larger
problems (better data structures to optimize the
application of heuristics, more compact and e�-
cient SSat encodings, encoding domain knowledge,
memoization for contingent planning, using learn-
ing to accelerate the solution process, and more so-
phisticated splitting heuristics). In order to scale

up to even larger problems, however, it may be nec-
essary to develop approximation techniques. In this
section we describe one possible approach.
Our approximation algorithm randevalssat takes

an SSat formula and returns an approximation of
its value, along with the policy that approximately
produces this value. The algorithm uses a policy
tree representation. Policy trees include multiple
copies of each existential variable|one for each
possible assignment to the randomized variables
that precede it in the quanti�er ordering|thus em-
phasizing the fact that the value of each existential
variable can be a function of the values of the pre-
ceding randomized variables. Figure 2 shows the
policy tree for the following SSat instance:

9x1; 9x2;
R
y1;

R
y2; 9x3; 9x4;

R
y3;

R
y4;

E[(x1 _ x3 _ y3)(x2 _ x4 _ y2)(x3 _ y1 _ y4)] � �:

Existential variables, and their copies, are called
decision variables and are shown as rectangular de-
cision nodes in the policy tree. To indicate that the
value of each instance of a copied variable can be
set independently, these variables are renumbered
in the policy tree (parenthesized subscripts).
Each leaf of the policy tree represents a partial

assignment consisting of an assignment to all ran-
domized variables in the SSat formula. The proba-
bility of a leaf is the product of the probabilities of
the outcomes along the path from the root to the
leaf. A policy is an assignment of Boolean values
to the decision variables in the policy tree. Given a
policy, all the root-to-leaf paths in the policy tree
represent complete assignments to the variables in
the formula, each of which is either satisfying (value
1) or unsatisfying (value 0). The value of a policy is
the weighted sum of the probabilities of the satis�ed
leaves. The value of a policy tree is the maximum
over all policies of the policy values.
A systematic search for the policy with the high-

est value would solve the SSat problem, but this is
a doubly exponential process: the size of the pol-
icy tree is exponential in the number of random-
ized variables and systematically searching for the
best policy is exponential in the number of decision
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Simplified Formulae at Leaves Given Random Variable Assignments

Original Formula:

Leaf 1:

Leaf 2:

Leaf 3:

Leaf 4:

Leaf 5:

Leaf 6:

Leaf 7:

Leaf 8:

Satisfied

Satisfied

Leaf 9:

Leaf 10:

Leaf 11:

Leaf 12:

Leaf 13:

Leaf 14:

Leaf 15:

Leaf 16:

Satisfied

x1 x5∨( ) x2 x6∨( )

x1 x3∨( )

x1 x9∨( ) x2 x10∨( ) x9( )

x1 x3∨( )

x1 x5∨( ) x2 x6∨( )

x2 x6∨( )
x2 x6∨( )

x1 x7∨( ) x7( )

x7( )
x1 x7∨( )

x1 x9∨( ) x2 x10∨( )
x2 x10∨( ) x9( )
x2 x10∨( )

x1 x3 y3∨ ∨( ) x2 x4 y2∨ ∨( ) x3 y1 y4∨ ∨( )

Figure 2: A policy tree (a) represents the set of
contingent choices in an SSat problem.

nodes in the policy tree. Instead, the algorithm
randevalssat uses stochastic sampling to limit the
size of the policy tree constructed and randomized
local search to �nd the best policy for that reduced
tree. This approach is similar to that of Kearns,
Mansour, & Ng (1999) for choosing approximately
optimal actions with high probability in in�nite-
horizon discounted Markov decision processes.

The algorithm constructs a partial policy tree by
choosing a set W of w assignments to the random-
ized variables proportional to their probability and
independently of the policy. These sampled assign-
ments select out a set of leaves from the full policy
tree, with the probability of an assignment given
by its frequency of selection in the random sample.
The top of Figure 3 gives a partial policy tree de-
rived from the sample in the bottom of Figure 3
and the policy tree of Figure 2. The value of a
policy is then estimated as the proportion of the
w sampled leaves that are satis�ed by the policy.
A direct application of Cherno� bounds shows that
w = O( 1

�2
log( 1

�
)) samples are su�cient to be sure

with probability 1�� of having an estimate no fur-
ther than � away from the true value (Littman, Ma-
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Assignments Responsible for Leaves in Partial Decision Tree

Leaf 1:

Leaf 2:

Leaf 5:

Leaf 8:

Leaf 13:

Leaf 14:

Leaf 15:

y4 1=y1 1= y2 1= y3 1=

y4 1=y1 0= y2 0= y3 0=

y4 0=y1 0= y2 0= y3 1=

y4 1=y1 0= y2 0= y3 1=

y4 0=y1 1= y2 0= y3 0=

y4 1=y1 1= y2 0= y3 1=

y4 0=y1 1= y2 1= y3 1=

Original Formula: x1 x3 y3∨ ∨( ) x2 x4 y2∨ ∨( ) x3 y1 y4∨ ∨( )

Figure 3: Randomized local search can be applied
to a partial policy tree, obtained by sampling, to
provide an approximate answer for an SSat in-
stance.

jercik, & Pitassi 2000). Note that this number does
not depend on n, m, k, or how the SSat formula
or the policy was created.

As illustrated in Figure 2, the e�ect of a policy
on a leaf can be summarized by a Boolean formula,
called a path formula, for that leaf. Each random
sample can potentially produce a di�erent path for-
mula, and the union of all the path formulas pro-
duces a treeSAT formula, which can be viewed as
both a collection of clauses and a collection of path
formulas. A satisfying assignment to the treeSAT
formula corresponds to a setting of the decision
variables that satis�es the original SSat formula
along all paths in the partial policy tree. In gen-
eral, this will not be possible; instead randevalssat

use randomized local search to search for a treeSAT
assignment that maximizes the number of path for-
mulas that are satis�ed. In our experiments, this
was done by hillclimbing on an objective function
that counts both clauses satis�ed and path formu-
las satis�ed. A satis�ed path formula is weighted
as heavily as the number of clauses in the original
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Figure 4: As the number of sampled assignments in-
creases, the accuracy of the randomized local search
algorithm increases. Because of local optima in the
search space, increasing the number of sampled as-
signments does not drive the error to zero.

SSat formula, so that satisfying all the clauses in
a path formula contributes more to the treeSAT
formula's value than satisfying the same number of
clauses scattered over more than one path formula.

Experiments

The performance of randevalssat for computing the
value of SSat instances was tested on 27 sets of
100 random formulas, generated under the �xed-
clause model using a modi�ed version of makewff
that guarantees a formula with exactly n variables.
For each problem a Sat instance (all existential
variables), aMajsat instance (all randomized vari-
ables), and all possible instances that contain an
equal number of existential and randomized vari-
ables in alternating blocks of the same size were
constructed. For each of these problems, 10 di�er-
ent partial policy trees were created by sampling
randomized variable assignments and constructing
the tree paths speci�ed by the samples. The num-
ber of assignments sampled w ranged from 5 to 4086
on an approximate logarithmic scale; the larger the
number of samples, the greater the similarity of the
partial tree to the full tree. Performance was mea-
sured by comparing the estimate of the value of
the partial policy tree to the exact value of the full
policy tree (and, hence, the formula).
Figure 4 shows results for randevalssat on prob-

lems with 12 variables, 24 clauses, and 3 literals per
clause (results for all 27 sets of problems were sim-
ilar). The graph shows mean squared error in the
value estimate as a function of the number of sam-
pled assignments for all problem types. The mean

and variance of the squared error decrease as the
number of assignment samples increases. We note
that the nonzero error in the limiting case, where
the number of assignments sampled is su�cient to
construct the full policy tree with high probabil-
ity, is due to the use of randomized local search.
If a more time-consuming systematic search of the
partial policy tree is employed, the error is driven
to zero as the number of sampled assignments in-
creases (Littman, Majercik, & Pitassi 2000).

Application to Planning Problems

Once we have translated a probabilistic planning
problem into an SSat instance, it would seem to
be straightforward to apply the stochastic sampling
algorithm to the SSat problem to �nd an approx-
imation of the optimal contingent plan and an ap-
proximation of its probability of success. The situ-
ation is complicated, however, by the fact that we
use randomized variables to describe observations.
This means that a random sample of the random-
ized variables describes an observation sequence as
well as an instantiation of the uncertainty in the do-
main, and the observation sequence thus produced
may not be observationally consistent . Informally,
an observation sequence is observationally consis-
tent if there exists a sequence of actions and an in-
stantiation of the environment that could possibly
produce that observation sequence. For example,
assuming perfect sensors, it would be observation-
ally inconsistent to observe at time step t that a
valve driver is permanently failed and at time step
t+ 1 that it is operational.

Applying the stochastic sampling algorithm di-
rectly to planning problems can result in the gen-
eration of observationally inconsistent paths in the
partial policy tree. And these paths, which are un-
satis�ed paths regardless of the setting of the ac-
tion variables chosen, need to be treated di�erently
from observationally consistent paths, which have
the potential to become satis�ed paths, depending
on the values chosen for the decision variables. If
the algorithm includes observationally inconsistent
paths in its estimate of the probability of success
of a given policy, it will tend to underestimate this
probability. The algorithm needs to either avoid
generating observationally inconsistent paths in the
�rst place, or ignore them in its calculations.

Considerations of e�ciency suggest that the �rst
strategy is to be preferred whenever possible, and
this suggests two alterations to the stochastic sam-
pling algorithm in order to make it applicable to
SSat encodings of planning problems:

� Sample tree paths only from P , the set of paths
that are observationally consistent for some ac-
tion sequence and instantiation of the environ-
ment.
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� Adjust the evaluation of policy trees as follows:
Instantiating the decision variables in the policy
tree selects P 0 � P , the set of paths in P that
are observationally consistent for that setting of
decision variables and some instantiation of the
environment. Let S � P 0 be those paths in P 0

that are satis�ed paths. Then, the probability
of success of the contingent plan represented by

that policy tree is
jSj

jP 0
j
.

There are various algorithmic issues that need to
be addressed. First, we need to �nd an e�cient
way of constructing P and P 0. One possibility is
to use user-supplied information to prune at least
some of the observationally inconsistent paths when
constructing P . A second possibility is to construct
encodings such that unit propagation can be used
to e�ciently detect observational inconsistencies.
Second, the algorithm returns a partial assign-

ment strategy, or policy, that speci�es how each
decision variable should be set given the settings
of the decision and observation variables that pre-
cede it in the quanti�er ordering, but this is only
speci�ed for those situations represented by paths
in the random sample used to construct the partial
tree. The algorithm implicitly assumes that per-
formance on missing branches is the same as the
average performance over all paths in the partial
tree, but doesn't actually �nd a plan that achieves
this performance. One possible strategy for ad-
dressing this issue would be an iterative approach
that alternates planning and evaluation. In this
approach, each iteration would perform an evalu-
ation of the current policy (perhaps by simulat-
ing executions of the policy) and use that evalu-
ation to guide the construction of a partial pol-
icy tree that would lead to a better policy. This
is similar to approaches that identify the most se-
vere problems in an imperfect plan and then at-
tempt to correct them (Drummond & Bresina 1990;
Onder & Pollack 1997).

Summary

The stochastic sampling algorithm randevalssat ap-
pears to be a promising approximation method for
SSat encodings of planning problems. Its primary
strength is the use of sampling to convert the prob-
lem to a lower complexity problem and its use of
randomized local search to solve that problem ef-
�ciently. A feature of this process is that it does
not necessarily completely discard the probabilities
of the original problem (as would, say, a conver-
sion that merely rounded o� the probabilities of
the randomized variables to 0 and 1 and set their
truth values accordingly). It would, for example,
be possible to modify the algorithm such that the
probabilities of the randomized variables are used
to direct the construction of the partial policy tree.

A more substantial modi�cation, discussed above,
would be to iteratively build the partial policy tree
by using the solution of the partial policy tree in a
given iteration to construct a better partial policy
tree (and solution) in the next iteration.
This algorithm has some weaknesses. First,

randevalssat does not return an answer whose cor-
rectness is \easy" to certify; this is to be expected,
given the complexity of SSat problems. Second,
there are SSat problems for which the algorithm
needs provably large samples (Littman, Majercik,
& Pitassi 2000). Third, randevalssat is subject to
the same pitfalls as other randomized local search
algorithms; in particular, it may become stuck in lo-
cal optima. Allowing the algorithm to restart after
a period of no progress helps minimize, but does
not erase, this problem. Finally, the memory re-
quirements of the algorithm can be prohibitively
large. This weakness can be partially overcome by
more memory-e�cient implementations, but prob-
lems that require a large number of samples to pro-
duce an accurate answer will inherently generate
large treeSAT formulas.
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First, a brief description of the commentator's
interpretation and understanding of this paper.  It describes
a methodology for bounding non-deterministic problems.
It appears this is done by solving for deterministic states
and then using those solutions to "limit" the extent of the
non-deterministic states to be considered, thus making the
"whole problem" easier to solve by raising it to a higher
probability of being knowable.  Optimization of a resulting
sequence is not a requirement on this tool.

The first question would be about where in an uplink
process this tool would be useful?  As with any planning
tool it can be of value during early planning phases but has
any thought been given to other types of uplink tasks it
may be used for?  Would this type of technology be used
primarily on the ground by a flight team or could it be used
as part of a spacecraft's onboard flight software, perhaps in
responding to faults encountered during flight?

Some discussion is provided about the performance of the
algorithm but it really only consists of comparisons and
general discussion.  There is a need for data that could
provide a more quantitative assessment?  For instance, a
sequence of activities consisting of N activities with an
average of M commands per activity and with a total
duration of T days required X minutes (or hours) to run to
completion and the resulting sequence satisfied some
percentage Y of the requirements levied on it.  It would be
useful to see even some quick and dirty quantitative
analysis of performance.  The comparisons to other similar
tools is valuable but it's actual numbers that help a user
understand the product.  Also, if it takes the program
longer to run to completion than the duration of the
sequence it's trying to build then it's of questionable value
as a useful tool during the later stages of sequence
development.

Because this is a technical paper about an extremely
technical topic, it contained a great deal of jargon, much of
which is specialized jargon. Though this is a method for
accurately expressing the concepts contained in the paper,
it also makes the work difficult to understand by those not
intimately familiar with the specific technical field.  The
commentator had to work at not becoming lost in the
words and the notation.  It is suggested that the authors
consider  "wordsmithing" some of the text to make it more
readable (and, hence, more meaningful) to someone who
doesn't necessarily have this type of technical background.
This should be especially considered for a few of the most
important concepts and techniques.  Doing so would make
the paper more "intellectually available" to a wider
audience.

The commentator's experience dictates that any tool used
as a planner for sequencing a spacecraft must provide the
ability to override its decisions while maintaining its
internal fidelity.  This ability to override is useful when a
flight team needs to force things to be done differently than
a tool would do it because they're responding to an
anomaly or, more likely, some user demands that their
activity be performed in a manner or at a time that the
planner thinks is wrong.  Maybe the deviation from the
standard rules is a one-shot-deal or maybe it's in response
to some special circumstances that suddenly arose ("Oh,
oh, there's a supernova happening right now over there in
the sky and we have to violate this pointing constraint and
go look at it").  The paper did not address this issue.
Therefore, some level of flexibility should be made
available with this tool?  The way spacecraft operations are
done today and are being planned for the future makes
flexibility a requirement on any planning tool.
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Abstract
The majority of planning and scheduling research has
focused on batch-oriented models of planning.  This paper
discusses the use of iterative repair techniques to support a
continuous planning process as is appropriate for
autonomous spacecraft control.  This allows the plan to
incorporate execution feedback - such as early or late
completion of activities, and over-use or under-use of
resources. In this approach, iterative repair supports
continuous modification and updating of a current working
plan in light of changing operating context.

Introduction

Traditionally, much of planning and scheduling research
has focused on a batch formulation of the problem.  In the
batch approach, time is divided up into a number of
planning horizons, each of which lasts for a significant
period of time.  When one nears the end of the current
horizon, one projects what the state will be at the end of
the execution of the current plan.  The planner is invoked
with a new set of goals and this state as the initial state (for
example the Remote Agent Experiment operated in this
fashion (Pell et al, 1997)) .

This approach has a number of drawbacks.  In this batch
oriented mode, typically planning is considered an off-line
process which requires considerable computational effort
and there is a significant delay from the time the planner is
invoked to the time that the planner produces a new plan.1

If a negative event occurs (e.g., a plan failure), the
response time until a new plan may be significant.  During
this period the system being controlled must be operated
appropriately without planner guidance.  If a positive event
                                               
1 As a data point, the planner for the Remote Agent Experiment
(RAX) flying on-board the New Millennium Deep Space One
mission (Muscettola et al 1997) takes approximately 4 hours to
produce a 3 day operations plan.  RAX is running on a 25 MHz
RAD 6000 flight processor and uses roughly 25% of the CPU
processing power.  While this is a significant improvement over
waiting for ground intervention, making the planning process
even more responsive (e.g., on a time scale of seconds or tens of
seconds) to changes in the operations context, would increase the
overall time for which the spacecraft has a consistent plan.

occurs (e.g., activities finishing early), again the response
time may be significant.  If the opportunity is short lived,
the system must be able to take advantage of such
opportunities without a new plan (because of the delay in
generating a new plan).  Finally, because the planning
process may need to be initiated significantly before the
end of the current planning horizon, it may be difficult to
project what the state will be when the current plan
execution is complete.  If the projection is wrong the plan
may have difficulty.

To achieve a higher level of responsiveness in a dynamic
planning situation, we utilize a continuous planning
approach and have implemented a system called CASPER
(for Continuous Activity Scheduling Planning Execution
and Replanning).  Rather than considering planning a batch
process in which a planner is presented with goals and an
initial state, the planner has a current goal set, a plan, a
current state, and a model of the expected future state.  At
any time an incremental update to the goals, current state,
or planning horizon (at much smaller time increments than
batch planning)2 may update the current state of the plan
and thereby invoke the planner process. This update may
be an unexpected event or simply time progressing
forward.  The planner is then responsible for maintaining a
consistent, satisficing plan with the most current
information.  This current plan and projection is the
planner’s estimation as to what it expects to happen in the
world if things go as expected.  However, since things
rarely go exactly as expected, the planner stands ready to
continually modify the plan.  From the point of view of the
planner, in each cycle the following occurs:

• changes to the goals and the current state first
posted to the plan,

• effects of these changes are propagated through the
current plan projections (includes conflict
identification)

• plan repair algorithms3 are invoked to remove
conflicts and make the plan appropriate for the
current state and goals.

                                               
2 For the spacecraft control domain we are envisaging an update
rate on the order of 10 seconds real time.
3 In this paper we do not focus on the state/resource
representation or the repair methods (Rabideau et al. 1999).
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At each step, the plan is created by using iterative repair
with:

• the portion of the old plan for the current planning
horizon;

• the updated goals and state; and
• the new (extended)planning horizon.

Even though our intent is to make the planning process
very responsive (on the order of seconds), there still
remains a synchronization process between planning and
execution.  Specifically, there are several issues in
integrating planning with real time execution - below we
list these issues and how they are addressed in our
approach.

• When to replan?  Our approach replans when the
current plan projection predicts a problem with the
current plan (i.e. when the plan combined with the
current state is infeasible).

• What to do (execute) during planning time?  If
feedback from the world combined with the current
plan indicates that the current plan has a flaw (e.g.,
the plan will not execute or does not achieve goals),
what gets executed during the time that the planner
is replanning?  Our approach attempts to minimize
the amount of time for replanning to minimize the
chance that a conflict appears in the portion of the
old plan that gets executed.

• How much time should the planner be given to
replan?  The longer the planner is given the more
likely it will be able to resolve all of the problems.
But the longer the replan time, the greater the
problem of "What to execute in the meantime?"
from above.  Our approach attempts to minimize the
amount of time given to replan, but we believe this
criteria can only be determined in a domain-specific
fashion4.

• How to ensure the planner does not change
activities that are already in execution?  Our
approach uses a commitment mechanism to
represent activities that would not be changeable by
the time that the planner would complete its current
cycle of reasoning.  When an activity overlaps with
this window (i.e. the activity is scheduled to begin
very soon) it is committed.  This means that the
planner is forbidden from altering any aspect of this
activity (such as by moving the activity or altering
the activity parameters).  Thus far we have focused
on time-based commitment strategies (e.g., commit
any activities scheduled to begin in the next T time
units), however, our architecture supports more
complex commitment strategies (such as it being
dependent on the class of activity and allowing
parameter changes later than activity moves, etc.).

In addition to increasing the responsiveness of planning,
the continuous planning approach has additional benefits:

• The planner can be more responsive to unexpected
                                               
4 However, an interesting area of research is to automatically
determine this via empirical feedback and domain analysis.

(i.e., unmodeled) changes in the environment that
would manifest themselves as updates on the
execution status of activities as well as monitored
state and resource values.

• The planner can reduce reliance on predictive
models (e.g., inevitable modeling errors), since it
will be updating its plans continually.

• Fault protection and execution layers need to worry
about controlling the spacecraft over a shorter time
horizon (as the planner will replan within a shorter
time span).

• Because of the hierarchical reasoning taking place
in the architecture there is no hard distinction
between planning and execution – rather more
deliberative (planner) functions reside in the longer-
term reasoning horizons and the more reactive
(execution) functions reside in the short-term
reasoning horizons.  Thus, there is no planner to
executive translation process.

In conjunction with this incremental, continuous
planning approach, we are also advocating a hierarchical
approach to planning, however we do not describe this
approach here due to space constraints, for details see
(Chien et al. 2000).

An Architecture for Integrated
Planning and Execution

Our approach to integration of planning and execution
relies on three separate classes of processes.
• The Planner Process(es) - this process represents the

planner, and is invoked to update the model of the plan
execution, to refine the plan, or when new goals are
requested.

• The Execution Process(es) - this process is
responsible for committing activities and issuing
actual commands corresponding to planned activities.

• The State Determination Process(es) - this process is
responsible for monitoring and estimating states and
resource values and providing accurate and timely
state information.

• The Synchronization Process - this process enforces
synchronization between the execution, planner, and
state determination processes.  This includes receiving
new goals, determining appropriate timeslices for
planning and locking the plan database to ensure non-
interference between state updates and the planner.

We describe planning, execution, and state determination
as sets of processes because often these logical tasks will
be handled by multiple processes.  For example, spacecraft
attitude control execution might be handled by one
process, data management by another, etc.  However, for
the purposes of this paper (e.g., integration of planning and
execution), the only relevant issue is that our
synchronization strategy can be applied to a multiple
process scheme for planning, state determination, etc.
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The overall architecture for the continuous planning
approach is shown in Figure 1.  We now describe how each
of the four basic components operates.

The planner process maintains a current plan that is used
for planning (e.g. hypothesizing different courses of
action).  It responds to requests to replan initiated by the
execution processes, activity commitments from the
execution module, state (and resource) updates from state
estimation, and new goals (from external to the system).
All of these requests are moderated by the synchronization
process that queues the requests and ensures that one
request is complete before another is initiated.  The
planners copy of the current plan is also where projection
takes place and hence it is here that future conflicts are
detected.  However, as we will see below, requests to fix
conflicts occur by a more circuitous route.

The execution process is the portion of the system
concerned with a notion of "now".  The execution module
maintains a copy of the plan that is incrementally updated
whenever the planner completes a request (e.g., a goal
change, state change, or activity change).  This local copy
includes conflict information. The execution module has
three general responsibilities:

1. to commit activities in accordance with the
commitment policy as they approach their execution
time;

2. to actually initiate the execution of commands (e.g.,
processes) at the associated activity start times

3. to request re-planning when conflicts exist in the
current plan

The execution module performs 1 & 2 by tracking the
current time and indexing into relevant activities to commit
and execute them.  The execution module also tracks
conflict information as computed by the projection of the
planner and submits a request for replanning to the

synchronization module when a conflict exists.5

The state estimation module is responsible for tracking
sensor data and summarizing that information into state
and resource updates.  These updates are made to the
synchronization module that passes them on to the planners
plan database when coordination constraints allow.

The synchronization module ensures that the planner
module(s) are correctly locked while processing.  At any
one time the planner can only be performing one of its four
responsibilities: (re)planning, updating its goals,
incorporating a state update, updating the execution
module’s plan for execution, or updating commitment
status (otherwise we run the risk of race conditions causing
undesirable results).  The synchronization module
serializes these requests by maintaining a FIFO task queue
for the planner and forwarding the next task only when the
previous task has finished.

The execution module also has a potential
synchronization issue.  The planner must not be allowed to
modify activities (through replanning) if those activities
might already have been passed on to execution.  We
enforce this non-interference by "commit"-ing all activities
overlapping a temporal window extending from now to
some short period of time in the future (typically on the
order of several seconds).  We ensure that the planner is
called in a way that each replan request will always return
within this time bound and we enforce that the planner
never modifies a committed activity.  This ensures that the
planner will not complete a replan with an activity
modified that is already in the past.  Additionally, we use
the synchronization process to ensure that the Execution
module does not commit activities while the planner is
replanning. This prevents the planner from modifying
activities that have been committed subsequent to the
planner call (but still in the future).

ST4 Spacecraft Landed
Operations Scenario Validation

Space Technology 4 / Champollion (ST4) is a mission
concept for outer solar system exploration involving
landing on a comet and returning a sample to Earth.  Our
scenario focuses on operations of the lander which drills
for samples, analyzes them and takes science images.
After several days on the surface, the lander will bring a
sample back to the orbiter for return to Earth.

In order to test and evaluate our integrated planning and
execution approach, we have constructed an ST4
simulation, which accepts relatively high-level commands
such as: MOVE-DRILL, START-DRILL, STOP-DRILL,
                                               
5 In our implementation replanning is initiated by the execution
module because this allows for the notion of urgency information
(e.g. closeness of the conflict to current execution) to be
incorporated in the decision to replan.  If we did not wish to
incorporate this information, the planner module could make this
request directly to the synchronization module.
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Figure 1: CASPER Architecture
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TAKE-PICTURE, TURN-ON <device>, etc.  The
simulation covers operations of hardware devices.  In this
test scenario the planner has models of 11 state and
resource timelines, including drill location, battery power,
data buffer, and camera state.  The model also includes 19
activities such as uplink data, move drill, compress data,
take picture, and perform oven experiment.

The nominal mission scenario consists of three major
classes of activities: drilling and material transport,
instrument activity including imaging and in-situ materials
experiments, and data uplink. Of these, drilling is the most
complex and unpredictable.

The nominal mission plan calls for three separate
drilling activities (each consisting of a number of lower-
level operations). Drilling rate and power are unknown a
priori, but there are reasonable worst-case estimates
available. Drilling can fail altogether for a variety of
reasons.

In order to validate the effectiveness of our continuous
planning approach we have performed a number of
empirical tests to measure CASPER performance in terms
of:

1. responsiveness - the ability to deal with execution
feedback in a timely fashion;

2. robustness - the ability to produce executable plans
despite run-time variations in state, resource, and
activity durations; and

3. plan effectiveness - a measure of the overall
goodness of executed activities (with respect to
achieving plan goals).

We assessed these performance metrics using a stochastic
version of the ST4 simulation described above.  This
simulation had a number of random variables, which are
described below.

• Compression - we model the compression for
science data as a normal random variable with a
mean of 0.9 and a standard deviation of 0.25*0.9.
This has the effect of forcing the planner to respond
to buffer over-runs (as described above) and buffer
under-runs (to optimize the plan).

• Drilling Time - we model the amount of time to
drill in minutes as a random variable with mean of
30 and standard deviation of 3.

• Drilling power - we model the actual power
consumption from drilling in watts as a normal
random variable with mean 40 and standard
deviation 4.

• Oven Failure - we model oven failure occurrence as
Poisson distributed with each oven having a 50%
chance of failure over the entire mission horizon.

• Data Transmission Rate: we model the time to
transmit data in kilobits per second as a normal
random variable with a mean of 100 and a standard
deviation of 10.  This is intended to model the
variability in communications to the orbiter.

• Oven Warming and Cooling Times: we model the
amount of time to heat up the sample and for the
oven to cool down in minutes as random variables

with means of 30 and 120, and standard deviations
of 3 and 12, respectively.   This is intended to model
the unknown thermal properties of the samples.

In our tests we compare the CASPER continuous planning
repair approach to two alternative approaches:

1. Batch planning with no feedback - in this approach
an operations plan is generated from the initial state
and this plan is executed.  No feedback from
execution is used.

2. Batch replanning on failure - in this approach an
operations plan is generated from scratch.  When an
activity fails, the execution system halts execution
and replans from scratch (rather than modifying the
existing plan as in the CASPER approach).  No
activities are executed while the planner is
replanning.

In all cases, we compare the approaches using models with
best guess nominal estimates for times and resource usage,
as well as pessimistic 1-sigma estimates.

In order to assess the responsiveness of the system, we
measured the average amount of time from the receipt of
an update that required replanning to the time when a
conflict free plan is available (see Tables 1, 2 and 3: Time
to Correct Plan). In order to assess the robustness of the
system, we track the number of times when an invalid
activity is commanded (see Tables 1, 2 and 3: Number of
Invalid Commands). In order to assess the plan

Overall
Performance

# invalid
commands

# achieved
science goals

time to
correct plan
(in seconds)

CASPER 2.365 20.063 1.134

Batch
planning

54.769 2.194 0

Batch
replanning

17.977 6.722 20.125

Table 1   Overall Performance Comparison Averages

Best Guess
Performance

# invalid
commands

# achieved
science goals

time to
correct plan
(in seconds)

CASPER 2.909 24.677 .978

Batch
planning

61.341 2.699 0

Batch
replanning

22.112 16.878 17.107

Table 2   Best Guess Performance Comparison Averages

Pessimistic
Performance

# invalid
commands

# achieved
science goals

time to
correct plan
(in seconds)

CASPER 1.821 15.448 1.291

Batch
planning

48.197 1.690 0

Batch
replanning

13.842 10.566 23.144

Table 3   Pessimistic Performance Comparison
Averages
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effectiveness, we measure the science return of executed
activities (as measured by number of samples drilled and
analyzed in situ where the data was successfully
transmitted to the orbiter) 24 science goals are originally
submitted to the system, and we report the number
completed successfully. (See Tables 1, 2 and 3: Number of
Achieved Science Goals).

In our setup, CASPER was running on a Sun
Sparcstation Ultra 60 with a 359 MHz process with 1.1 GB
Memory. During each of 1000 runs, the simulator updates
the plan an average of 18,000 times. (Most of these are
battery power level updates.) On average, only 86 updates
result in conflicts that should be handled by the
planner/scheduler.

We observe that CASPER outperforms batch planning
and batch replanning in the ST4 domain in terms of
spacecraft commanding and achieving science goals.  Note
that batch planning requires no time to correct an updated
plan because it does not replan, and therefore is superior to
CASPER in terms of the amount of time required to correct
a plan. However, batch planning suffers considerably due
to incomplete data transmissions and spoiled experiments
where samples where placed into inappropriately
configured or failed ovens.  Batch replanning performs
much better, but the replan time translates into missed
opportunities to plan and schedule science goals. Also,
more invalid commands are executed due to the time it
takes to replan. CASPER does execute some invalid
commands due to the fact that it takes some time to correct
an invalid plan, but CASPER achieves far more science
goals.

Discussion, Related Work, Conclusions

While the current prototype has been tested on a range of
cases in which state updates require replanning, we have
focused on execution feedback that cause conflicts in the
plan.  In the case of the failed oven, buffer over-use, and
activity completion time problem, the state update (when
propagated through the plan) causes a conflict.  There are
other cases in which a state update enables a plan
improvement.  For example,

• battery power usage might be lower than expected
enabling insertion of an additional sample activity;

• content-dependent compression might perform
better than expected allowing storage of additional
experiment data;  or

• drilling might be faster than expected again
allowing for additional science activities.

In each of these cases, the planner needs to be aware of the
potential for improvement in the current plan and be
triggered to attempt to take advantage of the fortuitous
situation.  In related work (Rabideau et al. 2000), we have
been developing plan optimization techniques for
representing soft constraints (preferences) and improving
plans with respect to these preferences (e.g., do more
science).  Our approach to optimization is an anytime,
incremental approach, thus the timeslices for the planner

can be used to attempt to improve the plan if there are no
conflicts in the plan.

A second issue is that in the current prototype, the
planner can only respond to unexpected changes on
activity boundaries.  This is a significant limitation when
there are activities that have extremely long durations.
This limitation is because the planner does not have a
model detailed enough to predict the resultant state if
activities are interrupted in mid-execution.  It would be
useful if the planner could incorporate a model that could
represent interruptible activities and act appropriately.
Currently such phenomenon must be modeled by breaking
the activity into smaller activities.

While we have tested our prototype on a range of
realistic scenarios, we would like to have a larger set of
missions and concepts to test against.  Because CASPER is
currently being used for autonomous rover applications, we
are in the process of adapting rover simulations for similar
testing.  Additionally we anticipate having access to
several other spacecraft simulations.  We intend to further
test and validate our approach against these missions.

Another interesting area for future work is investigating
more powerful commitment strategies.  One could easily
envisage problems in which different classes of activities
would have different possibilities for interruption or might
be terminatable with sufficient lead-time.  Enabling the
planner to represent these contexts and handle them
appropriately would be desirable.

The high-speed local search techniques used in our
continuous planner prototype are an evolution of those
developed for the DCAPS system (Chien et al. 1999) that
has proven robust in actual applications.  Many others have
used iterative algorithms for general problems such as
traveling salesman as well as scheduling systems( such as
GERRY/GPSS (Zweben et al. 1994)).

The OPIS system (Smith 1994) can also be viewed as
performing iterative repair.  However, OPIS is more
informed in the application of its repair methods in that it
applies a set of analysis measures to classify the bottleneck
before selecting a repair method.  With iterative repair and
local search techniques, we are exploring approaches
complementary to  backtracking refinement search
approach used in the New  Millennium Deep Space One
Remote Agent Experiment Planner (ARC 1999).

Excalibur (Narayek, 1998) represents a general
framework for using constraints to unify planning and
scheduling constraints, uncertainty, and knowledge.  This
framework is consistent with the CASPER design,
however in this paper we have focused on a lower-level.
Specifically, we have focused on re-using the current plan
using iterative repair and specific locking mechanisms to
avoid race conditions.

Work on the PRODIGY system (Cox & Veloso 1998)
describes goal alteration from environmental feedback.
These changes would be modeled in our framework via
task abstraction/retraction and decomposition for
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potentially failing activities.  Other PRODIGY work
(Veloso, Pollack, & Cox 1998) has focused on determining
which elements of world state need to be monitored
because they affect plan appropriateness.  In our approach
we have not encountered this bottleneck, our fast state
projection techniques enable us to detect relevant changes
by noting the introduction of conflicts into the plan.

Work on CPEF (Continuous Planning and Execution
Framework) (Myers 1998) uses PRS, AP, and SIPE-2, also
represents a similar framework to integrating planning and
execution.  CPEF and CASPER differ in a number of
ways.  First, CPEF attempts to cull out key aspects of the
world to monitor (as is necessary in general open-world
domains).  They also suggest the use of iterative repair
(they use the term conservative repairs).  And their
taxonomy of failure types is very similar to ours in terms
of action failure and re-expansion of task networks (re-
decomposition).  However, in this paper we have focused
on lower level issues in synchronization and timing.

Work in the O-Plan system has also addressed rapid
replanning (Drabble et al. 1997).  They describe an
approach that generally invokes the planner with the
current plan in a repair mode from the current state.  In this
way their approach and the CASPER one are very similar.
However, we have focused on lower-level timing and
synchronization issues necessary for execution and
planning on a shorter timescale.

3T system (Bonasso et al. 1997) has also examined
issues of integrating planning and execution.  Again, they
present a framework consistent with our architecture but
we have focused on lower-level timing issues.

This paper has described an approach to integrating
planning and execution for spacecraft control and
operations.  This approach has the benefit of reducing the
amount of time required for an onboard planning process
to respond to changes in the environment or goals.  In our
approach, environmental changes or inaccurate models
cause updates to the current state model and future
projections.  Additionally, the planner’s current goal set
may change.  In either case, if these changes matter (e.g.,
the current plan no longer applies) they will cause conflicts
in the current plan.  These conflicts are attacked using fast,
local search and iterative repair methods
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COMMENTARY ON

USING ITERATIVE REPAIR TO IMPROVE THE
RESPONSIVENESS OF PLANNING AND SCHEDULING

Commentary Author: Mario Merri
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Rabideau
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Method
As recommended by the workshop organising committee,
we have adopted an “open ended” commentary process.
This translated by an informal exchange of e-mails
between the commentator and the authors of the paper.

In the following, the main findings in the commentary
process are reported. Firstly, I briefly introduce my
understanding of the paper assigned to me. Subsequently,
I summarise the dialogue that took place between the
paper authors and myself. Wherever possible, I have tried
to use the exact wording of the authors’ replies.

Main Findings

Understanding of the Paper
The paper presents an innovative approach to modify
almost in real-time the planning of a mission. Actually,
the terminology used is to “repair” the planning following
the occurrence of events. In this context, I feel that we are
more in the field of on-board autonomous system than in
that of mission planning proper, although the boundary
between them is clearly difficult to define.

The approach presented in this paper is in alternative to
the more traditional batch planning where only a very
limited reactivity to negative or positive unforeseen events
is possible. On the contrary, the proposed dynamic

planning is claimed to allow a faster response to
unpredicted event with the consequence of, on one hand,
having a safer spacecraft, and, on the other hand,
maximising the scientific return and the resource
utilisation. In fact, the on-board planner starts from a
current set of goals, a plan, a current state, and a model of
the expected future state. At any time, an incremental
update to the goals, current state, or planning horizon may
trigger a request for re-planning with the constraint to
maintain a consistent and satisfactory plan with the most
current information available. Synchronisation between
planning and execution is achieved by defining a time
window where activities are committed and can no longer
be modified by the planner.

Furthermore, the system proposes a hierarchical approach
to planning with several levels. Starting from an abstract
long-term planning, shorter and shorter planning horizons
are considered which include greater and greater details,
until finally we arrive to the short time planning. This
approach aims at limiting the use of on-board
computational and at maximise the system responsiveness
by requesting detailed planning only on the short term.

Commentary
General: I have found the topic of the paper very
interesting. The paper is also quite clear and reads fine.

Testing: I have pointed out to the author that one of the
known critical issue for these types of autonomous system
is the complexity of testing. In fact, as the system will
have to make decisions in isolation, it is clearly extremely
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important to have the system undergoing an extensive
testing campaign. It is also well know that testing a
mission planning system might be extremely complicated
as it is often difficult to cover all possible cases. In this
context, I have asked the authors of the paper to provide
details on how the testing had being planned, set up and
performed in their case.

The author’s response was that “testing is planned on
series of testbeds, but testing for our system is intended to
be similar as for other planning systems:

1. test case generation - based on scenario analysis, etc.

2. regression testing

3. the above can be run on progressively higher fidelity
environments

It is true that our approach, because it relies more on
environmental feedback, is more likely to have greater
execution variability.

However, precisely because of this reliance, it is less
reliant on model accuracy.”

Safety-Critical Operations: My next question concerned
safety-critical operations. Usually, operational staff would
like as much as possible to be in control of the execution
of safety-critical operations. On the other hand,
technology provides today tools and methods to achieve
reasonably-safe levels of autonomy. These are clearly two
distinguished schools of thought. More specifically, my
question to the authors was if, in their opinion, they felt
that their system was adequate also for the execution of
safety-critical operations or if their concept foresaw that
such operations were only handled under strict supervision
from ground

The author’s response was that “this depends on the
ability to characterize system behavior via testing and
analysis, and on the risk-aversness of the mission.  We see
our approach as being comparable in riskiness to
traditional batch planning autonomy.”

Ground Observability of Timeline Execution Status:
We then continued discussing on the dualism between
fully autonomous systems versus ground controlled ones. I
felt that an autonomous system would stand more chances
to be accepted even by “conservative” operational staff if it
had the capability to provide operational staff with
relevant information on the execution of the autonomous
timeline. In this context, I asked if any mission intending
to make use of their autonomous planning tool had put
observability requirements on the execution status of the
timeline. That is to say, if missions have specified
mandatory information to be downlinked to ground so that
operational staff could know exactly what is going on on-

board. Furthermore, in case of positive answer to the
previous question, I asked how do they handle these
observability requirements.

The author’s response was that they “are not that far on
the technological maturity to have encountered that issue.
In general, our execution and timeline analysis is not
restricted by our representation, that is to say that if they
could build monitors and state determination software to
provide this observability in conventional flight software,
we can incorporate such software in our approach.  Thus,
we do not introduce any additional observability
problems.”

Autonomy Valid Only for Simple Planning Problems?:
The complexity of the planning problem clearly plays a
fundamental role in the outcome of the planning system.
Furthermore, complex planning problems require complex
planning systems that are clearly more prone to errors also
considering that it is more difficult to exhaustively testing
them. My observation was that, for simple planning
problems, the behaviour of the planning system, and thus
the status of the spacecraft, is mainly deterministic (see
also observability point above). Instead, if the mission
planning problem is a complex one, the overall status of
the spacecraft is somehow more stochastic, which, in case
of problems, might bring to unrecoverable situations.

The author’s response was that “Yes - this is certainly
true.  Indeed, it is precisely these situation that one has
two options:

1. make the decision making onboard, with the ability to
respond in known patterns of behavior to execution
feedback. (our approach).

2. introduce abstraction, worst-case reasoning, and
reduce efficiency in order to increase
stability/predictability  (common approach)”

How Complex is your System?: As follow on of the
discussion reported to the point above, I have asked the
authors to comment on how their system scale for
increasingly complex planning problems and what is their
operational concept to recover from timeline errors.

The author’s response was that they “have demonstrated
the iterative repair on what we would call medium-size
problems, and are able to get on the order of 100+ search
operators in the planner (i.e., move add, delete activity) on
the order of CPU seconds, however, it is always possible
that problems from execution require wholesale changes
(e.g. beyond the computational ability of the planner to
resolve). [Their] approach to dealing with this has been
two-fold.
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1. develop anytime approaches, which are able to adopt
a feasible but poor (quality-wise) solution and
improve it as computational resources are available.

2. use abstraction to enable larger-scale changes to take
place with fewer search steps.”

Conclusions
My personal experience on this exercise was certainly
positive as it allowed a direct discussion with experts on
the hot topic of autonomous mission planning. Although I
am not in a position to express an unconditioned
acceptance of all the authors’ replies, I certainly feel that
this field is very important and requires further
investigation. It is clear that, as the space frontier is
moving farther and farther from the Earth, this technology
becomes more and more required.

As a final remark, I think that the format proposed by this
workshop worked quite well and, despite the limited time
available, it was possible to establish some interesting
technical discussion on stimulating topics.
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Why SOFIA's Choice Matters

This paper describes the automated scheduling of ob-
servations for an airborne observatory. The problem
is to construct ight plans in support of astronom-
ical observations of very distant objects in order to
optimize the science output of the observatory. The
resulting problem contains a large set of prioritized
observations to choose from, and a wide range of com-
plex constraints governing legitimate choices and or-
derings.
This problem is quite di�erent from scheduling

problems which are routinely solved automatically in
industry. For instance, the problem contains many in-
teracting complex constraints over both discrete and
continuous variables, and the consequences of making
some decisions are other decisions to make later. Fur-
thermore, new types of constraints may be added as
the problem changes over time. As a result of these
features, this problem cannot be solved by traditional
scheduling techniques. The problem resembles other
problems in NASA, from observation scheduling for
rovers and other science instruments to vehicle rout-
ing; consequently, it is worthwhile to determine how
to address this problem.
In this paper we describe the observatory and the

problem of planning ights in support of astronom-
ical observations. We discuss why this is a di�cult
problem to solve using traditional scheduling tech-
niques, then discuss an approach based on dynamic
constraint satisfaction techniques which can address
this problem.

SOFIA: The Observatory

The Stratospheric Observatory for Infrared Astron-
omy (SOFIA) is NASA's next generation airborne
astronomical observatory. The facility consists of
a 747-SP modi�ed to accommodate a 2.7 meter
telescope. Employing a suite of optical, infrared,
and sub-millimeter instrumentation, the observatory
spans operational wavelengths of 0.3 to 1600 microns.
SOFIA supersedes NASA's Kuiper Airborne Obser-
vatory (KAO) - a modi�ed C-141 with a 0.9 meter
telescope. SOFIA is expected to y an average of 140
science ights/year over it's 20 year life time, double
the previous rate of the KAO. The combination of

�I would like to thank Ari J�onsson, David Smith, Sean
Casey, and Jesse Bregman for their help in writing this
paper.

a factor of nine in telescope collecting area and an
approximate factor of two in aircraft ight rate es-
tablishes SOFIA as NASA's premier observatory for
innovative astrophysical instrumentation throughout
the broad wavelength range of the facility. More de-
tails on SOFIA can be found in (Becklin 1997) and
(Erickson & Davidson 1997).

Building upon the KAO program, SOFIA will rou-
tinely provide astronomers with a research platform
above 99% of the earth's water vapor. The SOFIA
telescope is mounted aft of the wings on the port side
of the aircraft and is articulated through a range of
20 to 60 degrees of elevation. Most ights will orig-
inate and terminate at Mo�ett Field, CA; therefore,
it is necessary for the observatory ight plans close
in on themselves. This typically requires an astro-
nomical observing plan covering both Galactic and
extra-galactic targets.

In this paper, we are concerned primarily with the
problem of scheduling ights in support of the Gen-
eral Investigator (GI) program. GIs are expected to
propose single observations, and many observations
must be grouped together to make up single ights.
The SOFIA science sta� is expected to have 3 - 4 fa-
cility science instruments to support GIs. The scope
of the ight planning problem for supporting GI ob-
servations with the anticipated ight rate for SOFIA
makes the manual approach for ight planning daunt-
ing. There has been considerable success in automat-
ing the scheduling of jobs in a wide variety of indus-
tries with many di�erent types of constraints. How-
ever, these problems are typi�ed by relatively sim-
ple, homogeneous constraints, and the successful ap-
proaches depend on these simple representations. In
this paper, we describe an approach to solving more
complex scheduling problems which can address the
di�cult problem of planning ights.

Planning for a Single Flight

The basic problem for an airborne observatory like
SOFIA is the Single Flight Planning Problem (SFP).
This problem consists of constructing a good ight
plan for a single ight on a given day. The problem
input consists of the set of observations that have
been requested, the constraints peculiar to the ight
environment, and the objective function.
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The Observation Requests

An observation request consists of the name and co-
ordinates of the object to be observed, the amount of
time requested, the relative importance of the obser-
vation, and a set of constraints on the observation.
We assume that the amount of time is �xed and also
that it is strictly less than the maximum duration of
the ight. The importance or priority of the observa-
tion is a summary of several di�erent factors. Some
observations are naturally more interesting to the sci-
ence community than others. Additionally, due to
the limited duration of ights, it may be necessary to
observe a target many times, and thus important to
�nish a sequence of observations on a target than to
start a new observation. Observation requests have
the following constraints:

Ordering Constraints Some operations must be
performed in a pre-speci�ed order. For example, in-
struments may need to be calibrated by observing
particular objects before the primary observation of
interest is performed. In addition, the telescope may
need to be tuned at the beginning and periodically
during the ight by observing objects with particu-
lar characteristics. High-precision tuning may require
observing the same object at multiple elevations, for
instance. These requirements impose ordering con-
straints on the observations that must be obeyed 1.

Astronomical Constraints Some objects may
only be visible from certain positions on the earth
at certain times of day, resulting in an earliest start
time and a latest end time for completing a given ob-
servation request. Astronomers may also provide ex-
plicit constraints on particular observations so that
the data is of high quality. For example, the as-
tronomer may require that the object be su�ciently
far away from the moon or the sun, or that airmass or
atmospheric water vapor be below a certain thresh-
old. These constraints also dictate when a target may
be observed. In particular, minimizing airmass re-
quires observing at a higher altitude, and minimiz-
ing water vapor can be accomplished by observing at
higher altitudes or by observing further north (Horn
& Becklin 2000).

Aircraft Constraints SOFIA has complex con-
straints simply because it is an airborne observatory.
Most objects appear to move through the sky as time
passes. Because the telescope has little horizontal
exibility, the aircraft must y a curved trajectory
in order to keep objects in view. The wind speed,
aircraft speed, and time and position an observation
is started dictate the trajectory and �nal location of
the aircraft at the end of the observation. Object vis-
ibility windows are further constrained by the limits
on the telescope's angle of elevation. Even though an
object may be visible from the ground, it may not be
visible from the aircraft, either because it is too low
or too high for the telescope to view. An object may
sometimes have multiple windows of visibility during
a single ight. For example, it may pass above and

1While calibrations and setup operations are not
strictly observations, we represent them this way for
convenience.

then below the maximum telescope elevation, requir-
ing a choice of when to observe.
The aircraft must normally return to the airport it

took o� from. Flight time is limited by fuel, requiring
all observations to be done with enough time for the
aircraft to return, from wherever it is, to the airport.
Finally, the aircraft's altitude is constrained by its
weight, but the weight decreases over time as fuel
is consumed, so the aircraft can generally climb an
additional 2000 ft every two hours. These factors can
interact with constraints on airmass or water vapor
to further limit possible observing times.

Figure 1: Visibility of an object during March 18,
2000 from Mo�ett Field. Note that time is given
in Universal Time, and that sunset and sunrise are
marked.

Many of these constraints are demonstrated in Fig-
ure 1. This �gure shows visibility and heading infor-
mation for an object viewed fromMo�ett Field during
March 18, 2000. The y axis shows the heading the
aircraft must y to keep the object in view. The di-
rection changes over time, indicating that the aircraft
must constantly turn to keep the object in view. The
curves on the plot indicate when the object is in view.
No curve indicates the object is below the telescope's
20 degree minimum elevation, while the dotted curve
indicates the object is above the 60 degree maximum
elevation. Notice that the object passes below the
minimum elevation and then returns to view then
passes above the maximum elevation and again re-
turns to view. During any 9 hour period, there are
at most two windows of visibility for this object.

The Flight Environment

In this section we discuss constraints derived from
the environment on the day of the ight. One impor-
tant example of such constraints are airborne warning
zones, commercial ight routes, and other adminis-
trative restrictions on where the aircraft can y. Some
ight environments may have fewer such restrictions;
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for example, if the aircraft ies out of Hawaii or New
Zealand, there will be fewer such restrictions than
ights over Nevada. Bad weather may constrain ob-
servations as well. While cloud cover is usually not
an issue at the altitudes where observing is likely to
occur, turbulence can a�ect the performance of the
observations, and may increase observation time or
have other e�ects on ights. Wind speed and direc-
tion can also have an e�ect on a particular ight. The
aircraft's ground speed is directly a�ected by wind,
and wind patterns change over time. Flight planners
must take these e�ects into account when doing plan-
ning.

The Objective Function

The �nal component of the SFP is the objective func-
tion, which is used to compare two candidate ight
plans. Within the con�nes of the single ight plan-
ning problem, the objective function can range in
complexity. A good ight contains as many high-
priority observations as possible; hence a good objec-
tive function might be to simply sum the priorities of
the observations which are performed. Astronomers
may also prefer rather than require that observations
be done at various water vapor levels, that targets be
observed when they are far from the moon or other
heavenly bodies, and so on. All of these preferences
can then be added to the objective function, resulting
in a fairly complex measurement of the quality of a
ight plan.

The Statement of the Problem

With all the components in place, we can now state
the SFP: given a set of observations to perform, a date
to perform them, a description of the environment on
that date, and the objective function, select a take-
o� time, a subset of the observations, a start time
for each observation, and specify any dead-legs (i.e.
ying without observing). The resulting ight plan
must not violate any of the constraints and should
optimize the objective function. Figure 2 shows an
example of a ight plan.

The Complexity of Flight Planning

Many e�cient scheduling techniques rely on special
encodings of problems in order to deliver good com-
putational results. These techniques work only for
simple constraints, such as equality and inequality or
simple combinations of resource and precedence con-
straints. For example, many clever encodings and
algorithms exploiting them can be found in a recent
text on scheduling techniques (Brucker 1998). While
these techniques are very e�cient, they have limited
application, and a great deal of sophisticated model-
ing may be necessary to pose problems in the correct
form.
As we have seen, any instance of the SFP is

composed of a large number of complex, heteroge-
neous constraints over both continuous and discrete
variables. Even relatively simple versions of the
SFP contain geometric constraints, precedence con-
straints, mutual exclusion constraints and temporal
constraints, all in the same problem. While it may
be possible to encode parts of the problem in order

Figure 2: A ight plan. Each observation leg is
marked with +s and labeled, while dead legs are sim-
ple lines. Note that no restricted areas are indicated
in this �gure; this ight plan is likely to cross re-
stricted areas over Nevada.

to take advantage of e�cient algorithms, it is unlikely
that we can �nd a good encoding which will serve for
all instances of the problem. Furthermore, over the
lifetime of the observatory, other constraints may be
required to represent a ight planning problem. For
example, new instruments and newly discovered ob-
jects may impose new constraints. The addition of
these constraints may invalidate any specialized rep-
resentations and algorithms.
The SFP presents another challenge. In particu-

lar, it is not known beforehand how many observa-
tions will be performed on any given ight, nor is it
known how many dead-legs will be required. Each
choice made during the planning and scheduling of
the ight may explicitly create other choices; for ex-
ample, a decision to observe an object at a particular
time and place could be preceded by a dead leg to
reach that position, or observing another object be-
forehand. Traditional scheduling techniques require
all of these choices to be explicitly represented, along
with constraints which are triggered once the choice is
made. Encoding all of this information results in large
representations. The problem only becomes worse as
the scope of the problem grows; thus, while it may be
possible to encode a small SFP, it may not be possi-
ble to encode a larger one because the encoding will
not �t into the computer's memory.

Automatic Generation of Flight Plans

In this section, we describe an approach to repre-
senting and solving the SFP. This approach is based
on the Constraint-Based Interval Planning (CBIP)
paradigm, which is described in (Smith, Frank, &
J�onsson 2000) and which was successfully employed
in the Remote Agent Planner (?).

78          2nd NASA International Workshop on Planning and Scheduling for Space



Constraint Satisfaction and Optimization
Problems

Constraint Satisfaction Problems or CSPs are an ap-
proach for representing many problems, including
scheduling problems (both (Beck & Fox 1998) and
(Nuijten 1994) both represent and solve scheduling
problems as CSPs). A CSP consists of a set of vari-
ables, each of which has an associated domain of legal
values it can take on in a solution, and a set of con-
straints, which restrict the legal assignments to sets
of values. These constraints can be extensional, in
which all the legal assignments are listed, or inten-
tional, in which constraints are written as a mathe-
matical relationship. A constraint is satis�ed by an
assignment if the values assigned to the variables are
permitted by the constraint. A solution to a CSP is
an assignment of each variable to a single value in its
domain such that all the constraints are satis�ed.
CSPs contain no mechanism to express a prefer-

ence between two solutions that satisfy all of the con-
straints. A Constraint Optimization Problem or COP
is a CSP which includes a mapping from a solution
to the real numbers. This mapping encodes the pref-
erences between solutions which satisfy all the con-
straints. It should be clear from the discussion of the
SFP above that we can pose the SFP as a COP.
The representation of a CSP may be unwieldy due

to the large number of constraints required to en-
code the conditional e�ects of all of the choices. An
alternative representation is the Dynamic Constraint
Satisfaction Problem or DCSP. A DCSP is a sequence
of CSPs, in which each CSP is a modi�cation of the
previous CSP in the sequence. A CSP C is said to be
a relaxation of a CSP D if C has fewer constraints,
fewer variables or more combinations of assignments
permitted in its constraints and a restriction if C
has more constraints, more variables or fewer combi-
nations of assignments permitted in it's constraints.
These ideas are formalized in (J�onsson & Frank 1999).
DCSPs provide a way to formally characterize how
a problem changes over time, and require less space
since the impact of choices need not be encoded in a
single representation of the problem.

Procedural Constraints

The notion of a constraint is very general, and many
real-world problems can be represented very naturally
with simple constraints. However, sometimes repre-
sentations of problems using simple constraints can
become large and unwieldy. For instance, an enor-
mous amount of space is required to explicitly repre-
sent all of the possible time-location pairs when an
object is visible. It is often more e�cient to repre-
sent a constraint with a mathematical relation such
as �. Procedural constraints (J�onsson 1996) general-
izes this concept by formalizing the notion of a proce-
dure which enforces a relation among the variables of
a constraint. A special form of procedural constraint
called an elimination procedure is permitted to get rid
of any element of a domain that is provably not part
of any solution to the problem, given the information
currently at hand. For example, an elimination pro-
cedure might eliminate all observations as candidates
for the next observation on a ight because the air-

craft is almost out of fuel. Procedures also are used
to formalize the concept of decision variables. If a
procedure is able to assign values to a set of variables
V �D given a consistent assignment to the variables
in D, then there is no reason to search the values of
variables in V �D. The variables in D are called the
decision variables, since those are the only variables
which require making decisions. Continuous variables
can be handled by making sure they are not in the
set of decision variables (J�onsson & Frank 1999).

Constraint-Based Interval Planning

CBIP is a general planning framework that uses a
model to specify the domain in which the planning is
to take place. The elementary notion in this frame-
work is that of an interval, which denotes an ac-
tivity or state which is maintained over a period
of time. Each interval is described using a set of
DCSP variables. The temporal aspects of a inter-
val are described using variables that represent the
start time, the end time, and the duration of the
interval. Actions and states can have parameters
that further specify the action or uent, so the state
value described by the interval is also described by
a set of DCSP variables. An interval consists of the
name of an action or state, and some parameters of
that action or state. The model consists of planning
schemata, which specify relations between intervals,
enforcing preconditions, e�ects, enabling conditions,
mutual exclusions, etc. These schemata then give rise
to constraints between the di�erent DCSP variables
that describe the di�erent intervals. A set of con-
nected intervals, i.e, a candidate plan, gives rise to
an instance of a constraint network. We employ pro-
cedures as described in the previous section to enforce
some of the more complex constraints.

The CBIP Representation of the SFP

In this section we describe how to represent the SFP
in the CBIP framework 2. Let us assume that the
problem consists of a set of observation requests, and
our task is to construct a ight for a particular day
such that the sum of the priorities of the observations
performed exceeds a certain threshold. The durations
of the observations are �xed, but we will permit dead
legs in this problem. For simplicity, we ignore re-
stricted zone constraints and arti�cially restrict the
bearings of dead legs to the 4 cardinal directions, and
restrict dead leg ight duration to 5, 10, 15 or 20
minutes.
Let us suppose that as part of the SOFIA domain

we want to represent calibration operations for the
instruments on board the aircraft. We would then
write a planning schema for a Calibrate action. In
the schema below, variables are preceded by a ?. The
schema might look like this:
Calibrate(?loc,?Target,?Instrument,?NextOp):-
CalibrateT ime(?dur;?Target; ?Instr)
LocationAfterCalibrate(?loc; ?endloc; ?dur)

2We have considerably simpli�ed the presentation, and
the resulting ight plans would require post-processing
before �nal approval.
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contained-by Status(?Instr,ON)
contained-by Calibration(?Target)
contained-by Observable(?Target)
meets Calibrated(?Instr)

Eq(?Next;Obs)! meets Observe(?any,?endloc,?any)
Eq(?Next;DLeg)! meets DeadLeg(?endloc,?any)

The line CalibrateT ime(?dur; ?Target; ?Instr),
indicates that the instrument, duration of the op-
eration, and target used to perform the calibration
are mutually constrained. Subsequent lines specify
temporal relationships between the calibration event
interval and other intervals. For example, contained-
by Status(?Instr,ON) indicates that the instrument
must be turned on for an interval encompassing the
calibration interval. Finally, the last two lines specify
disjunctions over intervals that may be related to the
calibration event interval. For example, the value of
the ?NextOp variable indicates whether an observa-
tion interval or a dead-leg interval follows the calibra-
tion interval.
As planning decisions are made, variables and con-

straints arising from new intervals are added to the
constraint network, and variables and constraints
stemming from intervals that are no longer part of
the plan are removed from the constraint network.
Figure 3 shows how a partial plan translates to an
induced DCSP.

Calibrate(?Instrument,?Object) Observe(?Instrument,?Target,?duration)

C_start C_end

C_dur

T_start T_end

T_dur

?Object

EQ

EQ

Meets

ADDEQ ADDEQ

?duration_?Instrument

CALIBRATE− 
TIME

CBIP Layer

Dynamic Constraint Network Layer

Figure 3: A partial plan and the induced DCSP. As
commitments are made to steps in the plan, new
intervals are generated and new variables and con-
straints are added to the DCSP.

At this point we mention how domain speci�c
constraints are integrated seamlessly into the de-
scription of the planning domain. For example,
CalibrateT ime(?dur; ?Target; ?Instr) may be a very
complex relationship between the duration, target,
and instrument. However, once CalibrateT ime is
written as an elimination procedure, it can be speci-
�ed as part of a plan axiom as described above. This
gives modelers the exibility to decide how sophis-
ticated and powerful an elimination procedure they
wish to provide. We also observe that it is now possi-
ble to make restrictions such as those we demand on
consecutive dead legs. In this case, we would simply
write into the plan schema for dead legs that they
must be followed by an observation leg. As a �nal
point, we observe that it is relatively straightforward

to write a procedural constraint which handles the
ight plan threshold criteria; as each new observa-
tion leg is posted, we can update the inputs to the
optimization function and compute the new value of
the ight plan.

Finding Plans

Finding plans in the CBIP framework involves solv-
ing the DCSP which is created by specifying the ini-
tial state of the particular planning problem. This
is normally accomplished using backtracking search,
which constructs a solution to a DCSP by selecting a
variable from the remaining unassigned variables in a
problem, then trying each possible value in turn. If at
any point a constraint violation is detected, the pro-
cedure returns to the previous variable binding, and
tries another value. If all the values of a variable are
tried without success, then the procedure also returns
to the previous variable and tries another value.
We pose a particular instance of the SFP by speci-

fying an interval for each observation which could be
performed on a particular night, and specifying in-
tervals reecting the takeo� and landing legs of the
ight plan. The commitments to variable bindings
will establish which observations are made, in order,
after takeo� and throughout the ight. Plan axioms
can specify that certain intervals exist, but this re-
quirement can be satis�ed by either creating a new
interval, or making use of a pre-existing interval in
the current plan; these choices are also reected as
variable binding decisions. For instance, suppose that
the planner must decide what to do about an observa-
tion after a calibration. Either the planner can insert
a new observation into the plan, or determine that
the observation following this calibration is some ob-
servation already in the plan, thereby satisfying the
axiom. To ensure that the planner does not try and
make all observations, we permit the planner to \dis-
able" an observation by eliminating it's interval. The
optimization criteria will prevent the planner from
creating a legal ight plan with no observations.
This conceptually simple algorithm is guaranteed

to solve a DCSP or demonstrate that no solution is
possible. The worst-case running time for this proce-
dure is the product of the sizes of the domains of all
the variables, which is exponential in the number of
variables. Consequently, backtracking is only possi-
ble for DCSPs with discrete domains. Backtracking
can be easily modi�ed to solve DCOPs by saving the
value of the best solution found, and searching over
all solutions instead of halting after �nding the �rst
solution satisfying the constraints. In essence, this is
like imposing a new bound on solution quality each
time the old bound is improved upon. Figure 4 shows
a simple backtracking algorithm for solving the SFP
by complete search. Note the step in which the next
CSP is generated; this is accomplished by consulting
the plan schemata.
The performance of this algorithm depends dra-

matically on functions which select the next variable
to choose, select the order in which to try values, per-
form fast inference to eliminate values from the do-
mains of unbound variables, and decide which vari-
able binding decision is responsible for a constraint
violation. For instance, in the SFP, there is often
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procedure FindSFP(P )
generate next CSP, P 0

if a constraint is violated return fail
if problem solved return success
select an uninstantiated variable V
for all values of this variable v 2 dom(V )
if FindSFP(P 0

[ V = v) = success
return success

end for

replace P 0 with P if necessary
return fail

end

Figure 4: Finding a simple ight plan.

a choice concerning which observation to make for a
given observation leg. Since the goal is to exceed a
bound on the priority, a good choice might be to select
the remaining observation with the highest priority to
try next. However, if this observation is too long or
takes the aircraft in the wrong direction, other obser-
vations will not be possible and a poor quality ight
plan will result. Consequently, modifying this choice
by checking the direction the aircraft must y may
lead to better ight plans in less time. It should also
be clear that using procedural constraints to elimi-
nate bad choices for variables can save time, since the
algorithm does not need to guess these values. These
modi�cations are critical to good algorithm perfor-
mance; for results on traditional scheduling problems,
see (Beck & Fox 1998) and (Nuijten 1994).
It should be clear from the discussion of the con-

straints that ight planners must analyze several
tradeo�s when scheduling ights. For example, an ob-
vious tradeo� concerns whether to try a high-priority
observation �rst, or to try an observation of lower pri-
ority which may be easier to schedule. Another trade-
o� concerns when to schedule a particular observa-
tion. If the observation is constrained by a minimum
water vapor threshold, for instance, then this may
be satis�ed by ying higher or further north (Horn
& Becklin 2000). However, these both require mak-
ing observations later in the ight, and care must
be taken to ensure that the aircraft can still return
home. Tradeo�s such as these drive the construction
of both variable and value ordering heuristics, which
are necessary to ensure good algorithm performance.

Related Problems

The SFP is similar to other problems important for
both NASA and industry. For example, the Vehi-
cle Routing Problem (VRP) is the problem of deliv-
ering packages to various destinations in an urban
area(Kilby, Prosser, & Shaw 1999). This problem
does not have the complex geometric constraints that
the SFP features, but ordering constraints, package
size, fuel constraints, truck capacity and distances all
interact to make for a complex scheduling problem.
Scheduling operations for planetary rovers and inter-
planetary vehicles requires sequencing science obser-
vations and their enabling activities such as sample
acquisition, as well as operations to aid in naviga-
tion as well as re-charging operations. Furthermore,

the total number of operations must be within the
available power budget of the vehicle. Finally, path
planning and astronomical navigation feature com-
plex geometric constraints which may require simula-
tion.

Conclusions
The ight planning problem motivated by the SOFIA
GI program features many heterogeneous constraints
over a mixture of continuous and discrete variables.
The resulting problem is further complicated by the
fact that the problem includes an uncertain number
of steps and other conditional constraints that can
be very expensive to encode in a single problem in-
stance. These factors lead us to the conclusion that
traditional scheduling techniques which solve simple
scheduling problems are, by themselves, likely to be
inadequate. We show how to represent the problem as
a DCSP with procedural constraints. This problem
can then be solved by a complete search algorithm
using the procedural constraints to e�ciently elimi-
nate assignments. Only by doing so can we ensure
that SOFIA's choice will be made correctly.
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Abstract 
The author comments on the above-mentioned paper, also 
included in these proceedings. The author of these 
comments is not an authority either on planning or on the 
SOFIA observatory airplane, so these comments do not 
address the feasibility of the suggested approaches. 
Comparison is made to similar problems in the planetary-
spacecraft domain. Concerns are raised about the level of 
overlap required between technical domain experts and 
planning domain experts, but no recommendations are 
made. These concerns are a focus of ongoing research in the 
planning community, and some tools exist to address them. 

Commentator’s Background, or “What gives 
you the right…?” 

The commentator is not an authority on the planning and 
scheduling domain, and is not an authority on 
observatories, so he does not have any comments directly 
on the feasibility of the planning strategies proposed. The 
commentator has extensive experience in the development 
of flight software for planetary missions, and has related 
experience with the mission designs, mission activities, 
mission planning and operations. These missions pose 
analogous planning problems to the SOFIA mission. 

Analogies to Planetary Mission Planning 
Problems 

Planetary missions pose planning problems analogous to 
the SOFIA mission, although the specific constraints and 
models are different. For instance, on the New Millennium 
Deep Space 1 (DS1) mission, the science team had to 
schedule an asteroid encounter sequence. An asteroid 
encounter is a short time period (usually, hours) during 
which the mission will try to pack in as many observations 
as possible. Some constraints on the mission plan:  
 

• Some observations can only be taken at certain 
distances from the target, or under certain lighting 
(phase-angle) constraints. 

• Since not all instruments share the same boresight, 
shifting from one instrument to another, or from one 

target on the asteroid to another requires time, 
during which other observations cannot be taken. 

• Some types of observations (imaging spectrometers, 
particles and field experiments) require slewing 
relative to the target, while others (imaging) require 
staring at a single target.  

• There are points during the closest encounter when 
the spacecraft cannot slew fast enough to track the 
target. 

• Onboard data storage is limited. Storage space can 
be reclaimed by downlinking data to Earth, but this 
takes time away from data collection. 

• Orbital tours have similar types of constraints, 
combined with orbital constraints on when 
particular targets are visible.  

 
Because of these analogous planning problems across 
different problem domains, it would be desirable to come 
up with representations and solutions that are not closely 
coupled to particular domains.  
  

Applicability of MDS Concepts 

The commentator is currently working as the Guidance, 
Navigation, and Control lead for the Mission Data System 
(MDS) project at the Jet Propulsion Laboratory. MDS is 
developing a framework to describe planetary mission 
system in terms of the states of the system, how they are 
estimated and how they are controlled. States are 
controlled by imposing goals on the states, which constrain 
their acceptable values over certain time periods. A 
temporal constraint network is used to enforce the 
precedence & simultaneity dependencies among various 
goals. 
 
Imposition of goals results in a recursive elaboration 
process, where additional states and subgoals are imposed 
to support higher level goals. This elaboration establishes a 
hierarchical decomposition of the mission system, and 
allows designers to decouple the knowledge of different 
components of the system. Elaboration allows the software 
system to “fill in” a high-level mission plan by adding 
detailed configuration requirements and preparatory 
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activities. Elaboration also provides a framework for 
implementing the flight rules that are typically found in a 
spacecraft design. (Flight rules include requirements on 
preparations for certain activities, such as turning on and 
warming up equipment. They also define mutually 
exclusive activities, such as the inability to point an 
instrument in two directions at once.) This elaboration, 
coupled with models of the behavior and constraints on 
each state, allows an MDS-based software system to 
capture domain knowledge and to evaluate the feasibility 
of a proposed plan and its elaboration. If no conflicts 
(violation of flight rules) are discovered in the elaborated 
goals on any state, the plan is legal. 
 
Analysis of the system into its constituent states also 
simplifies the job of extending the system models. New 
types of activities can be added as new goals on existing 
states, making use of existing models. Unfortunately, this 
process does not give any hints on how conflicts can be 
resolved.  
 

Overlap between Domain Experts and Planner Experts 

Apparently, the typical process of designing a planner 
requires the implements to gather heuristics from the 
domain experts. The implementers then represent these 
heuristics, using tools supplied by a planner engine, such 
as HSTS. Unfortunately, this requires extensive 
interactions between domain experts and planning experts, 
and requires the planning experts to become domain 
experts (or vice versa). I understand that more automated 
heuristic gathering is an open research area. It would also 
be desirable not to rework the planner when new 
observations are added. With current planner designs, 
addition of new observations requires addition of new 
heuristics, and redesign of some portion of the planner. 

Planner-Imposed Restrictions on Domain Modeling 

The available search methods apparently place severe 
constraints on the types of constraints that can be 
represented in a planner. In the SOFIA problem, the plane 
can only fly in cardinal directions (North, South, East, and 
West) in order to discretize the possible directions. This is 
an artificial constraint on the system modelled, and 
requires domain experts to understand the limits on 
representation imposed by the planning system.  

No Surprises, No Silver Bullets 

According to the author of this paper, these are not novel 
observations, and they are active areas of research. I look 
forward to learning more about the HSTS system and 
planning, in general, in the interactions at the Planning & 
Scheduling Workshop. 
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Abstract

The high demand for satellite imagery and the rela-
tive scarcity of commercial imaging satellites combine
to produce scheduling problems in which one or more
of the resources is over constrained. Over-constrained
scheduling problems can be problematic for constraint
programming methods because of the overhead associ-
ated with propagating constraints and the time spent
backtracking over a large number of tasks that can-
not be scheduled. We present a hybrid approach called
priority segmentation that breaks the scheduling prob-
lem up into sub-problems based on the priority of the
tasks, �nds an optimal solution to each sub-problem,
and then combines the sub-problem solutions. Our
preliminary results indicate that priority segmentation
produces solutions that are an improvement over a
greedy solution when the problems are highly over con-
strained. When the problems are only slightly over
constrained, the percent improvement over greedy is
very small. Our results also indicate that greedy solu-
tions are competitive with more computation intensive
approaches under certain problem conditions.

Introduction

Satellite scheduling is the problem of mapping tasks
(observations, communications, downlinks, control ma-
neuvers, etc.) to resources (sensor satellites, relay satel-
lites, ground stations, etc.). Although the term satellite
scheduling has been applied to many di�erent aspects
of a satellite's operation (e.g., design planning, launch
control, lifecycle, etc.), our work has largely focused on
scheduling mission operations, namely the day-to-day
activities of an operational satellite. Mission operation
activities include: payload operations (e.g., using a sen-
sor to collect data), bus operations (e.g., maintaining
the health and status of the vehicle), and communica-
tions operations (e.g., transmitting data between satel-
lites or from satellites to the ground and receiving infor-
mation or commands from a ground station). The rest
of this paper will focus on scheduling of payload oper-
ations for remote-sensing satellites { namely deciding
which observations to perform.
Satellite mission operation schedules are typically

over constrained because the commercial demand for

satellite imagery to date has far exceeded the capabili-
ties of commercial satellite systems. For this paper, the
term \over constrained" refers to scheduling problems
in which the capacity required by the tasks exceeds the
total available capacity for at least one resource in the
problem.
To further quantify this property, we have adopted

the following de�nitions: The average constrainedness
of a scheduling resource is the ratio of the sum of the re-
source capacity required by all tasks to the total capac-
ity available. The average constrainedness of a schedul-
ing problem is the maximum average constrainedness
over all resources in the problem.
When the average constrainedness of a resource is

greater than one, we say that the resource is over con-
strained. Note that a resource can be over constrained
in one part of the scheduling problem and then under
constrained in another part. In cases where the level of
resource constrainedness di�ers greatly from one part of
a problem to another, it may be necessary to evaluate
the constrainedness of the di�erent parts of the prob-
lem independently. For this paper, we have focused
on problems where the average constrainedness of a re-
source does not vary signi�cantly from one part of the
scheduling problem to another.
The paper is organized as follows. Section 2 describes

the remote sensing scheduling problem and presents a
simpli�ed satellite imagery scheduling problem. Section
3 describes a constraint programming approach to solv-
ing this class of scheduling problems and discusses why
this approach can be problematic when the schedul-
ing problem is over constrained. Section 4 describes a
hybrid method that we have used to address over con-
strained scheduling problems. Sections 5 and 6 describe
our preliminary experiments and initial results. Section
7 discusses the results and related work. Finally, Sec-
tion 8 contains some conclusions and plans for future
work.

Remote Sensing Scheduling

The term remote sensing refers to the class of satellite
missions in which a satellite is used to make observa-
tions. The observations can be of either earth-bound or
interstellar objects. Due to the high cost of building,
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launching and maintaining remote sensing satellites, it
is typically the case that more than one user will share
the use of a satellite's sensing capability. It is also typ-
ically the case that the demand for use of the satellite
will exceed its capacity. This means that the scheduler
must choose which subset of the tasks to execute. A
good schedule is a tradeo� between the constraints of
the problem and the needs of the users.
As an example, a group of farmers in Kansas has

banded together to perform a land use analysis of their
farmland and the surrounding communities to better
assess the impact of the current drought. They have
contacted a remote sensing satellite operator and agreed
to purchase a set of satellite images that will be taken
over the next three days. The farmers set a maximum
three-day spacing between images to ensure that any
unexpected storm would not have time to a�ect the
crop growth assessment.
The satellite system's ability to perform the farm-

ers' tasks is constrained by several factors. First, the
ground location must be visible to the satellite. Sec-
ond, the quality of the image typically depends on the
angle between the satellite and ground (the aspect an-
gle). Typically, the best quality (highest resolution)
picture is taken when the satellite is directly over the
position to be imaged. For our example, the farmers
might have speci�ed a minimum quality for their im-
ages. The farmers could have also asked for stereo im-
ages, which are created by taking two separate images
of the same ground location from slightly di�erent view-
ing angles. To satisfy the constraints of a stereo image,
the satellite must take two images within a few minutes
of each other, and it must take both pictures in order
to satisfy the stereo requirement.
The physical characteristics of the satellite compo-

nents can also constrain the execution of tasks. The
most common examples are power, momentum, slew,
heat and memory. Slew refers to the movement of a
satellite sensor that is necessary to set it up before a
task is executed. In most cases satellite operators pre-
fer to minimize the amount of slew because the time and
power spent slewing the satellite is time and power that
could be spent performing revenue-generating tasks. A
satellite scheduling system must consider all of these
factors at some level in order to produce a schedule
that satis�es the problem constraints and also addresses
the objective functions (e.g., minimize slew, maximize
pro�t, etc.).
Another important source of constraints is users' re-

quirements. Since we have already assumed that the
satellite will not be able to perform all tasks in the time
available, the scheduling problem becomes an optimiza-
tion problem. Operators of commercial remote sensing
satellites want to maximize their pro�ts; therefore, they
are interested in generating schedules that maximize
the amount of money that they can collect from their
customers. For our example, the farmers might decide
to pay only if all of the images are taken because any-
thing less would make their analysis incomplete. Alter-

natively, they might create a priority ordering for the
imaging tasks and agree to a cost scale based on the
priority (i.e., to pay more for higher priority tasks).
The remote sensing scheduling problem can be sum-

marized as follows. The tasks are observations to be
performed by the satellite(s). Each task has a start
time and duration. Tasks require resources (e.g., the
satellites camera, power, etc.). Resources have �nite
capacity (i.e., a camera can only take one picture at a
time). When it is not possible to schedule every task,
the quality of the schedule can be measured by an objec-
tive function (e.g., maximize the number of tasks sched-
uled, maximize total revenue, minimize slew, etc.).

A Constraint Programming Approach
We have adopted a constraint programming approach
to satellite scheduling problems. We model the satellite-
scheduling problem using four basic objects: tasks, re-
sources, events and constraints. Tasks are the activ-
ities and operations to be performed. Resources are
the people, satellites, sensors, communication channels,
etc., that are required to accomplish tasks. Events
are used to capture domain-speci�c occurrences that
restrict when tasks can be scheduled (e.g., satellite vis-
ibility windows). Constraints are further restrictions on
when tasks can be scheduled due to interactions with
other tasks and to resource capacity and availability.
When the problem is over constrained, we assign a pri-
ority value to each task. The priority values can then
be used by the scheduler as part of an objective func-
tions (e.g., optimize the priority sum of the scheduled
tasks). For commercial imaging tasks, the task priority
could be directly related to the revenue of the task.
A task is scheduled by assigning it a resource, start

time and duration, which satisfy all of the relevant con-
straints. Tasks that require more than one resource
(e.g., a downlink task requires a satellite and a ground
station) will need to have more than one resource as-
signed to it. More formally, a scheduled task is a tuple:

(task; fresource setg; start time; duration)

In cases where the speci�c set of resources needed to
perform a task are known a priori, then the scheduling
problem is reduced to �nding an execution time and
duration for each task. When each task has a �xed du-
ration, then the scheduling problem is further reduced
to �nding an execution time for each task. If the task
start times are also �xed, then scheduling becomes a
problem of deciding which tasks to perform. We will
discuss the last problem class further in later sections.
We map satellite scheduling problems into constraint

programming problems by associating a variable with
each task. The values correspond to the start time,
end time and resources assigned to the task. In gen-
eral, our constraint-based scheduler explores the space
of possible schedules by choosing a task to schedule and
then selecting values for the start time, end time and
resource assignments. Our general purpose constraint-
based scheduler is built on top of ILOG Solver and
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Priority Segmentation:

1. Sort the set of tasks by their priority value.

2. Select the n highest priority tasks not yet scheduled.

3. Find an optimal schedule for the n tasks given the
resource constraints and previously scheduled tasks.

4. Lock the tasks that were successfully scheduled and
remove the tasks that could not be scheduled.

5. Loop to 2.

Figure 1: Priority segmentation algorithm.

Scheduler, which performs the constraint propagation
and directs the search based on the heuristics that we
have designed (e.g., the value and variable selection
heuristics).
This general approach to scheduling works well for a

range of problem parameters. However, we have found
that when the number of tasks requested by users ex-
ceeds the number of tasks that can be reasonably per-
formed, the performance of the constraint engine suf-
fers. This is due to the fact that it must propagate
constraints over a large set of tasks, most of which can-
not be scheduled. In addition, the scheduler can spend
a lot of time backtracking over a relatively large number
of tasks that have very little chance of being scheduled.
Thus the runtime of a constraint-based approach can
depend more on the number of tasks requested than on
the number of tasks that can ultimately be executed.
We have found this overhead cost to be intolerable for
the time demands of scheduling operational satellites.
For this reason, we have developed a hybrid algorithm
as a �rst step toward addressing this problem.

A Hybrid Approach

In this section, we present a hybrid approach for gener-
ating solutions to over-constrained satellite scheduling
problems.
Priority segmentation reduces the constraint propa-

gation overhead by breaking up the problem into a sub-
set of problems. The idea is to sort the tasks by their
priority value, divide them into groups of n tasks (where
n is a small integer), and then schedule one group at a
time. The algorithm details are shown in Figure 1.
Priority segmentation can be viewed as an applica-

tion of staged search (Ibaraki 1978) to a constraint-
based formulation of scheduling problems. Because the
algorithm commits to scheduling decisions before all
tasks are considered, it is necessarily a suboptimal al-
gorithm. For large scheduling problems (i.e., greater
than 1000 tasks), the computation cost of �nding op-
timal solutions is prohibitive so we must consider sub-
optimal scheduling algorithms. Suboptimal algorithms
must also be considered for problems with real-time
constraints on the scheduling. Obviously, we could ap-
ply additional optimization methods (e.g., local search)
to the output of priority segmentation. These issues are

not addressed in this paper and are the subject of future
work.

Experimental Design

We implemented priority segmentation using branch-
and-bound search to generate the optimal schedules for
task subsets. We also implemented a random prob-
lem generator to provide us with a set of test prob-
lems. For our initial investigation, we made some sim-
plifying assumptions about the remote sensing schedul-
ing problem. For example, we assumed �xed duration
tasks with �xed start times. This reduces the over-
constrained scheduling problem to deciding which of
the tasks to schedule (since the start time and dura-
tion cannot change). The objective is to choose a set of
tasks to schedule such that the sum of the task priorities
is maximized.
There are two justi�cations for simplifying the prob-

lem in this manner. One is to better focus our attention
on the over-constrained resource problem. The other is
that one of our customers is interested in solving a re-
mote sensing problem where a large number of tasks
(e.g., greater than 1000) need to be scheduled in less
than 30 minutes. The problem description includes a
model to calculate the slew required by the satellite to
reposition its camera between tasks. The slew model
provides the slew time between a given pair of tasks,
which depends on the imaging locations and the start
times of the two tasks. The time constraint on the
scheduler means that the slew must calculated ahead
of time and stored in a table. The size of the slew table
is (cn)2 where c is the number of possible start times
for individual tasks and n is the number of tasks. We
chose to require �xed start times for tasks so that the
slew table could �t in the computer's memory.
We generated a set of random remote-sensing

scheduling problems with the following characteristics.
The satellite system resources were simpli�ed to a sin-
gle resource (e.g., the camera) which has a capacity
of one (i.e., only one picture can be taken at a time).
Tasks were generated to simulate di�erent levels of de-
mand for the satellite resource that directly correspond
to di�erent levels of average constrainedness. The task
duration was �xed at 10 seconds for all tasks. Each
�xed start time was randomly selected from a uniform
distribution over the schedule period. The test sets did
not include any stereo tasks, precedence or logical con-
straints between tasks. The tasks priorities were ran-
domly selected integers from the range [1, 50] (where
1 is the lowest priority value). We generated problem
sets by varying the number of tasks and the schedul-
ing period to control the average constrainedness of the
problem (Cave).

Initial Experimental Results

We ran priority segmentation on a set of randomly gen-
erated scheduling problems that were built using the
simplifying assumptions described above. The priority
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Figure 2: Percent average priority sum improvement relative to greedy (100-task and 1000-task problems).

segmentation subset size was varied as well as the size
of the problem (i.e., number of tasks) and the aver-
age constrainedness (Cave). For a given problem size,
we varied the average constrainedness by choosing the
length of the scheduling period so that the average num-
ber of tasks per unit time was equal to the desired con-
strainedness. We performed experiments on 100-task
and 1000-task problems.
To provide a baseline for comparison, we imple-

mented a simple greedy algorithm (i.e., consider tasks
for scheduling one at a time from highest to lowest pri-
ority). Priority segmentation with a subset size of 1
is equivalent to this greedy algorithm. It is also inter-
esting to note that priority segmentation with a subset
size of 2 also produces the same solutions as this greedy
algorithm. This is because the order in which two tasks
are considered for scheduling doesn't a�ect which one
is scheduled.
Figure 2 shows the average solution quality as a per-

centage above the greedy solution for both the 100-task
and 1000-task problems. Each point is the averaged
over 100 problem instances. The results show that the
average solution quality (i.e., average schedule priority)
increases with the size of the priority segmentation sub-
set. For the 1000-task problems, the average solution
quality only increases very slightly for smaller Cave val-
ues and sometimes the average solution quality is lower
than greedy (e.g., when Cave = 10 and the subset size
is 8). In general, the results shown in the graphs il-
lustrate the trend that we expected, namely a gradual
increase in average solution quality as the subset size
is increased. The 100-task graph also shows a gradual

approach to optimal (12-percent above greedy) for the
Cave = 20 case as the subset size is increased.

As expected, the time required to perform priority
segmentation increases with the size of the problem and
the size of the subset. An example of the CPU time
for the case where Cave = 20 is shown in Figure 3.
Notice that the CPU time levels o� for the 100-task
case when the subset size is 32, in part because priority
segmentation is �nding optimal solutions.

At �rst we didn't expect to see the slight decrease
in average solution quality that occurred in some of
the results. This result can be explained by the fact
that priority segmentation with di�erent subset sizes
will search di�erent parts of the scheduling space, thus
it is possible for a larger subset to result in a lower aver-
age solution quality for any given problem instance. We
expect that larger priority subsets will generate better
solutions on average, although better solutions are not
guaranteed.

The results also show that the percent improvement
in solution quality over greedy increases with Cave for
a given priority subset size. This is because as Cave be-
comes larger, the set of tasks to choose from for a given
resource availability time slot increases. This also in-
creases the expected value of the maximum priority of
these tasks. In the limit as Cave approaches in�nity,
the probability that there is a task with maximum pri-
ority for every time slot approaches one. Thus as Cave

increases, we expect the optimal schedule score and the
average priority segmentation score to increase.

2nd NASA International Workshop on Planning and Scheduling for Space          87



Average CPU Time versus Group Size (100 Tasks) Average CPU Time versus Group Size (1000 tasks)

Subset Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30

A
ve

ra
ge

 C
PU

 T
im

e 
(i

n 
se

co
nd

s)

Subset Size

20

30

40

50

60

70

80

90

100

110

120

130

140

0 5 10 15 20 25 30

A
ve

ra
ge

 C
PU

 T
im

e 
(i

n 
se

co
nd

s)

Figure 3: Average CPU time versus priority segmentation subset size (Cave = 20, 100-task and 1000-task problems).

Discussion and Related Work

Admittedly, the results presented here are just a �rst
step toward understanding both this class of problems
and the priority segmentation algorithm. Although
we have used priority segmentation to address over-
constrained scheduling problems for at least two of our
customers, we are just beginning to evaluate its perfor-
mance on more general problems. Our initial results
indicate that priority segmentation can produce bet-
ter quality solutions that greedy under certain condi-
tions (e.g., when the average constrainedness is large).
Our result also suggest that, for this class of problems,
greedy solutions are often very competitive with more
sophisticated algorithms. Additional experiments and
analysis are necessary to clearly determine the condi-
tions under which priority segmentation is worth the
computational e�ort.
We are aware of other work on over constrained

scheduling problems. For example, the work by
Bressina et al. (e.g., (Bresina, Morris, & Edging-
ton 1997; Drummond, Bressina, & Swanson 1994)) on
ground-based telescope scheduling used a dynamic pri-
ority weighting scheme that depends on both the value
and age of the tasks (i.e., older tasks are given a higher
priority). Sobiesk et al. (e.g., (Olawsky, Kregsbach, &
Gini 1995; Sobiesk, Kregsbach, & Gini 1996)) have in-
vestigated a stochastic dynamic programming approach
to solving over-constrained product-quality planning
problems. We have not yet evaluated either of these ap-
proaches on our over-constrained remote-sensing prob-
lems. As mentioned above, priority segmentation can
be viewed as a variation on Ibaraki's work on hybrid

search (Ibaraki 1978) and thus is related to other hy-
brid search algorithms (Pearl 1984).
Lemaitre et al. (Lemaitre & Verfaillie 1997; Ben-

sana, Lemaitre, & Verfaillie 1999) have looked at a sim-
ilar problem of scheduling imaging tasks for the Spot5
satellite. For their problem, tasks have �xed duration
and �xed start times. They present results that com-
pare a variant of depth-�rst branch-and-bound called
Russian Doll Search to branch-and-bound and an im-
plementation using ILOG Solver. Their results show
that Russian Doll Search takes signi�cantly less time
on average than the other algorithms to generate good
quality solutions. Although the ILOG-based approach
requires more computation time, they argue that it may
still be the better choice because it is a more general
approach. Their work helps to justify our simpli�cation
of the more general satellite scheduling problem. In ad-
dition, their results support our belief that algorithms
tailored to exploit the structure of a class of problems
can often outperform general purpose approaches.

Conclusions and Future Work

We have presented a hybrid scheduling algorithm called
priority segmentation. Our initial results indicate that
it can produce better results than a simple greedy algo-
rithm when the average number of tasks competing for
a resource at any given time is high (i.e., greater than
10). Our results also suggest that greedy solutions can
be competitive for this general class of problems.
We intend to extend the work presented in this

paper in several ways. First, we are planning to
create a more sophisticated random problem gener-
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ator that will allow us to evaluate scheduling algo-
rithms on a wider range of problems (and more re-
alistic problems). Second, we are planning to con-
sider other suboptimal scheduling techniques such as
real-time search (Korf 1990). Finally, we intend to
implement and evaluate other approaches (e.g., local
search, Russian Doll Search (Lemaitre & Verfaillie 1997;
Verfaillie, Lemaitre, & Schiex 1996), dynamic program-
ming, etc.) to scheduling satellite resources.
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Commentary on the paper entitled
Towards Scheduling Over-Constrained Remote-Sensing Satellites
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At first, the paper entitledTowards Scheduling Over-
Constrained Remote-Sensing Satellites, presented by J. C.
Pemberton fromVeridian Pacific-Sierra Research, reminds
us that the problem of the management of an observation
satellite (either Earth observation, or space observation) is a
difficult combinatorial constrained optimization problem.

As it is clearly explained in the paper, its input data are:

� a scheduling horizonh;

� a setR of user requests;

� associated with each user requestr 2 R, a setCu(r) of
user-defined constraints, which define the conditions in
which the user wants his/her request to be achieved;

� a set Cs of constraints expressing the limitations of
the satellite: trajectory, manoeuvring ability, power, en-
ergy, memory on board, visibility windows, data down-
loading . . .

� an optimization criterionc, which is often a function of
the set of the selected requests.

The problem is to find a subsetR0 of R, which is feasible
(the constraints inCs [ [[r2R0Cu(r)] are all satisfied) and
optimal accordingc.

In fact, there are three kinds of decision to make:

� about the selection: which requests to select ?

� about their order: in which order to achieve them ?

� about their starting times: at which time to start each of
them ?

This problem is close to well-known problems in theOp-
erations Researchcommunity, as theMulti-Knapsackprob-
lem, the Job-Shop Schedulingproblem, or theTraveling
Salesmanproblem with time windows: well-known but dif-
ficult problems, at least if one looks for optimal solutions or
solutions the distance to the optimum of which can be guar-
anteed.

Generic frameworks, currently used to represent combi-
natorial constrained optimization problems, such asMixed
Linear Programmingor Constraint programming, can be
used to represent it.

Consequently, generic tools dedicated to these frame-
works, such asCPlex(Ilog Planner) for Mixed Linear Pro-
grammingor Ilog Solverfor Constraint programming, can
be used to solve it.

But, as J. C. Pemberton said, if these tools allow the obser-
vation satellite scheduling problem to be easily represented
and small instances to be solved efficiently, they do not al-
low generally large realistic instances to be solved correctly:
for these instances, they do not manage to produce optimal
solutions within a reasonable time; if they produce optimal
solutions, they do not manage to prove their optimality; what
is worse, the quality of the solutions they deliver when inter-
rupted is generally poor.

According to J. C. Pemberton, and I agree with him, it
is due to the difficulty of the selection of a small optimal
feasible subset of requests among a large set of candidate
requests, when the priority levels or the weights associated
with each request are very similar. The problem is at once
over-constrained and uniform, and it is known that over-
constrained uniform optimization problems are very diffi-
cult to solve: neither bound computing mechanisms used
in the Linear Programmingtools, nor constraint propaga-
tion mechanisms used in theConstraint Programmingtools
manage to make up for the explosion of the search space.

In fact, all the methods available to solve the problem, at
least as well as possible, in order to use these satellites as
efficiently as possible, belong to the following four families:
� Heuristic Greedyalgorithms;

� Local Searchalgorithms;

� Tree Searchalgorithms;

� Dynamic Programmingalgorithms.
Algorithms of the first two families are inexact (no op-

timality guarantee). Those of the last two families are ex-
act (optimality guarantee) when they are not interrupted. In
each of these families, a lot of variants can be defined. Be-
tween them, a lot of hybrid algorithms can be defined too.

What J. C. Pemberton proposes in this paper is a particular
hybrid algorithm: a combination ofGreedyandTree Search
algorithms.

As he observed thatTree Search, combined withCon-
straint Propagation, as it is implemented inIlog Solverand
Scheduler, can solve efficiently small instances, he orders
the set of the requests by decreasing priority, he cut it into
small subsets, solves optimally the problem that includes
only the first subset, then solves optimally the problem that
includes only the second subset with the solution of the pre-
vious problem locked, and so on.
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The algorithm he describes can be viewed as aGreedyal-
gorithm, the decisions of which are made on sets of choices
rather than on elementary choices. Besides, when the sub-
sets he considers are reduced to be singletons, his algorithm
is a simpleGreedyalgorithm. At the contrary, when the
set of the requests is not cut, his algorithm is a simpleTree
Searchalgorithm. Between both these extrema, any trade-
off between quality and time is possible.

Research is currently active about hybrid search mecha-
nisms, because people think that it is one of the ways of
improving the efficiency of the known mechanisms. J. C.
Pemberton’s proposal is interesting, simple and generic. It
could be used on many other problems.

Experiments he carried out show improvements in terms
of quality of the produced solutions, when compared with a
simple greedy algorithm. But, I would like to take advantage
of this commentary to ask people who report experiments
about the use of inexact optimization methods to give infor-
mation both in terms of quality and of time. And the best
way of reporting seems to be a quality profile, which shows
how the quality of the best solution found so far evolves with
time.

Finally, I would like to note that, at least for the simpli-
fied problem used in the experiments (fixed request starting
times, fixed request durations, one instrument), there exists a
very simple exactDynamic Programmingalgorithm, which
can certainly outperform all the other algorithms, in terms
of quality (due to optimality) and in terms of time. Unfortu-
nately, it is not the case for the general observation satellite
management problem.
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Abstract
When scheduling a collection of activities, it is often
useful to calculate the valid intervals for the collection
with respect to shared resources and states. The
constraints of these activities on shared resources and
states need to be analyzed to avoid miscalculations
due to interactions between the constraints. For shared
resources, a combined profile is typically generated
and used to compute the valid intervals. We introduce
a technique for generating a combined profile for
shared state constraints, which is subsequently used to
compute valid intervals. The worst-case complexity of
our technique is quadratic in the total number of
resource and state constraints in the problem. We
present empirical evidence indicating that our
technique improves performance of our planner on
real problems when compared to the performance of
the same planner using more naïve techniques.

Introduction
This paper describes an approach to solving the problem of
scheduling interdependent sets of activities in a combined
scheduling/planning problem. In this approach, we
compute a combined profile that encapsulates the
requirements and effects of the collection of activities on
shared states and resources. This combined profile is then
used to determine the least-conflicting placements for the
collection allowable in the current plan.

This problem is an important aspect of solving
combined planning and scheduling problems. In many
approaches to combined planning and scheduling, one
alternates between finding activities to satisfy pre- and
post-conditions (planning) and finding temporal
assignments and resources for those activities (scheduling).
Complex activity placement is also an important
component of many scheduling problems, as finding
temporal assignments for complex activities can be
computationally challenging.

This work advances the approach of moving
collections of activities whose temporal relationships
among themselves are fixed. We observe similar
techniques in job-centered scheduling approaches and
tabu-search approaches. We proceed by describing our
motivation, defining the problem, and describing the
solution. Finally, we present empirical evidence in favor of
our technique.

Motivation
We believe that reasoning about collections of activities (as
opposed to individual activities) is helpful in finding a
solution to a combined planning/scheduling problem. We
believe this is due to the increased complexity introduced
by the backtracking required for reasoning about individual
activities.  In a sense, we assume that decisions concerning
the members of the collection will hold even when shifted
“lock-step” in the schedule either forward or backward in
time. Although research concerning flexible intervals
between members of the collection might be fruitful, it is
left as future work. Even the simplest of approaches (e.g.
gradient descent) require that we know the least conflicting
intervals for a given collection, therefore we wish to
compute these intervals.

Problem
We assume some method for partitioning the complete set
of activities into separate collections. This partitioning is a
research area in its own right and outside the scope of this
paper (although we do describe our technique for
partitioning activities.)

We discover that naïve intersection of valid intervals
for single activities in the collection render both false
positives (intervals returned as being valid in fact cause
constraint violations) and false negatives (intervals
returned as causing constraint violations are in fact valid)
with respect to the whole. This can only be due to
interactions between the activities; or, more specifically,
interactions between the constraints on shared states and
resources.

For example, consider a pair of activities that affect a
battery (see Figure 1). The first activity a1 uses 10 amp-
minutes, while the second activity a2 restores 10 amp-
minutes. If we schedule a1 individually, we find no
intervals that will not cause an over-subscription of the
battery, because activity a3 has already fully depleted the
battery by the end of the current schedule. But, if we
schedule these together, we find placements that are valid.
The positive effect a2 has on the schedule makes up for
a1’s usage. We wish to handle this sort of constraint-
interaction for shared states and resources. We continue
with some definitions.
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Figure 1 Battery interaction example

Definitions
Activity: consists of a start-time (s ), an end-time (e ), and
a set of timeline constraints or reservations that represent
the constraints of the activity with respect to shared states
and resources (R ). R is conjunctive, therefore we do not
deal with multiple resources that could satisfy a single
constraint. For simplicity, we assume that times are
integers. We also assume that s < e.
Timeline: the representation of a shared state or resource
over time. All timelines consist of a set of value units that
represent the value of the timeline for all time-points in the
horizon. All timelines also consist of a set of global
constraints. Global constraints and values differ according
to the type of timeline.
Depletable Resource Timeline: a timeline representing a
resource that is added to or removed from over time. An
example is a battery, where usage depletes the battery and
recharging restores the battery. Global constraints include
the minimum level, the maximum level, and the default or
starting value.
Non-Depletable Resource Timeline: a timeline
representing a resource that is used for a period of time and
then relinquished back at the end of the usage. An example
is a power bus, where usage takes up some of the capacity
of the bus, and the cessation of usage restores the capacity.
Obviously, a non-depletable timeline can be represented by
a depletable timeline with a depleting reservation followed
by a renewing reservation (reservations are described
later), but we include these because the semantics of their
reservations aids in describing the semantics of
transformed depletable reservations. As with depletable
timelines, global constraints include the minimum level,
the maximum level, and the default value.
State Timeline: a timeline representing a state that can be
either changed or required by reservations. Values are
symbols; we use strings. Global constraints consist of a
transition graph G whose nodes represent allowed values

and whose edges represent allowed consecutive transitions
from one value to the next, and a default value.
Reservation: a constraint on a shared state or resource for
a specific interval to a specific value. Since reservations
are part and parcel with activities, reservations inherit their
start- and end-times (s, e) from the activity containing
them. A reservation also consists of a reference to a
timeline. The type of timeline that the reservation
constrains determines the type of the reservation.
Depletable Reservation: consists of a start-time (the end-
time is ignored) and a value (v ). v is an integer
representing the amount of capacity to be used by the
reservation. The value of any point on such a timeline is
the sum of all reservations at the time-point and previous,
as well as the default value. See Figure 2. Note that the
timeline models a value over time. The reservations are
labeled with their values.
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Reservations

Figure 2 Effect of depletable reservations

Non-Depeletable Reservation: consists of a start- and
end-time (s, e, as above) and a value (v ). v is an integer
representing the amount of capacity to be used by the
reservation. The value of any point on such a timeline is
the sum of all reservations that include the time-point in
their temporal extents, as well as the default value. See
Figure 3.
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Figure 3 Effect of non-depletable reservations

State Reservation: we address two types of state
reservations: changers and users.

A changer reservation consists of a start-time (s, the
end-time is ignored) and a value (v ). v is a symbol as
described for state timelines. The value of any point on
such a timeline is the value of the most recent changer
reservation. If two or more changers are simultaneous to
different values, the resultant value is invalid. See Figure 4.
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Figure 4 Effect of state changer reservations

A user reservation consists of a start- and end-time (s,
e ) and a value (v ). v is a symbol as described for state
timelines. A user reservation constrains the timeline such
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that for all points during its temporal extent, the value of
the timeline is the same as v. Note that user reservations
have no direct effect on the value of the timeline.
Conflict: a conflict is a violation of any constraint. These
include: 1) over or under subscriptions, where a resource
timeline value lies outside of its allowed range, 2) state
transition violations, where a state timeline value is
immediately followed by a value for which no
corresponding transition arc exists in its transition graph,
3) state usage violations, where a state timeline value
differs from a user reservation constraining the timeline
during the temporal extent of the reservation.

Solution Description
Our approach to computing the valid intervals (I) is as
follows: 1) gather all reservations of all activities, 2)
partition these according to timeline (i.e. for each timeline,
create a set that contains all of the reservations for the
timeline), 3) compute the valid intervals for each partition
(P),  4) translate and intersect the valid intervals. We focus
on step 3. We know that if the reservations in P do not
interact, then we can compute valid intervals for P by
computing those for each individual reservation in P. This
is accomplished by first computing each set of intervals Ir

for each individual reservation r in P. We then translate Ir

by the difference between the start-time of the reservation
and the earliest start-time in P, and intersecting all of the
resultant intervals.
The key point of our approach: transforming P into a set
of non-interacting reservations P’ is one way of making the
computation of valid intervals tractable.

Even if reservations in P interact, the reservations in
P’ do not, thus we can compute valid intervals using simple
translation and intersection of the valid intervals for each
individual reservation in P’.

To obtain P’, we merge the semantics of the existing
reservations. This is straight-forward for resource
reservations, but state reservations are problematic. For
example, if P consists only of a changer reservation to
“on” preceding a user reservation of “on”, the P’ requires a
reservation between them that ensures that either no
changes occur, or that the last change that does occur
accommodates the user. Our solution technique is
described more fully in (Knight, R., Rabideau, G., and
Chien, S. 2000.) The complexity of our technique is
quadratic in the total number of reservations, and scales at
a constant factor cost over more naive techniques.

Empirical Evaluation
We now describe an empirical comparison of an aggregate
search technique using our informed approach for
determining valid placements for collections of activities to
the same search technique using a naïve approach. We
evaluate two aspects of our algorithm: 1) quality in terms
of speed and accuracy, and 2) efficacy in terms of conflict
reduction, both in scheduling and combined planning and
scheduling.

In our empirical analysis we use four models (and
corresponding problem set generators): 1) the EO1
spacecraft operations domain, 2) the Rocky-7 Mars rover
operations domain, 3) the DATA-CHASER shuttle
payload operations domain, and 4) the New Millennium
Space Technology Four landed operations domain.

Within each model and corresponding problem set, we
generate random problems that include a background set of
fixed activities and a number of movable activity groups.
The activity groups are placed randomly. The goal is to
minimize the number of conflicts in the schedule by
performing planning and scheduling operations.

To solve each problem, we use the ASPEN
(Automated Scheduling and Planning Environment)
system using an “iterative repair” algorithm, which
classifies conflicts and attacks them each individually
(Rabideau, G., Knight R., Chien S., Fukunaga A.,
Govindjee A. 1999). Conflicts occur when a plan
constraint has been violated; this constraint could be
temporal or involve a resource or state timeline. Conflicts
are resolved by performing one or more schedule
modifications such as moving, adding, or deleting
activities. The iterative repair algorithm continues until no
conflicts remain in the schedule, or a timeout has expired.

The scheduler entertains non-conflicting placements
when moving activity groups. In the control trials the
scheduler does so using the naïve algorithm for computing
valid placements.  In the experiment trials the scheduler is
using the informed method to compute valid placements.
In all cases for each domain, both trials are using the same
set of heuristics at all other choice-points (e.g., selection of
a conflict or activity group to attempt to repair, where to
place within computed valid intervals, etc.).  Note that
simple (non-aggregate) operations are available in both
real domains, although they are of limited comparative
utility.  Using only non-aggregate operations, the problems
are intractable within reasonable time bounds. This is
because the distance in terms of sub-optimal moves from
one local optima to the next is O(n) and the space to be
searched is O(mn) where n is the number of activities in a
movable collection and m is the number of possible
locations given by a naïve calculation of legal intervals for
an individual activity. For example, in the EO1 domain, n
ranges from 23 to 56; in the Rover domain, n ranges from
8 to 17. Note that naïve calculation for valid intervals for
an individual activity are adequate for that activity.

We forego further description of the domains due to
space constraints.
Quality Assessment
To assess the quality of the algorithm, we directly compare
the accuracy and speed of the informed search mechanism
to the naïve intersection approach and a random placement
approach.  We assess the accuracy of the competing
approaches by comparing the intervals for legal placement
that each algorithm returns to the correct intervals.  We
assess the speed of the three approaches by measuring the
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CPU time taken by each algorithm to compute its intervals.
Accuracy is a desirable property in any algorithm to

determine “good” placements for aggregated activities.
Ideally, a legal interval generator would return exactly
those times that are legal placements for the member
activity.  This would mean that the algorithm would be
sound (e.g., all times in the interval returned would be
legal) and complete (e.g., all legal times would be returned
by the algorithm).  Table 1 shows the results of this
evaluation on the ST4, EO1, Rover, and DCAPS domains.
Because the informed method is complete and sound, it
returns all of the correct interval(s) and no incorrect
intervals.  However, the naïve intersection method has both
false positive (soundness) and false negative (completeness
errors).  As the data shows, it tends to miss the majority of
the legal interval (by failing to recognize positive
interactions between activities in the collection).

EO1 Rover DCAPS ST4

informed 0/14870 0/10030 0/5100 0/96890

naïve 14880/10 4250/5780 5700/3600 51690/45220

random 2742250/
2757120 16101/17104 2100/7200

360150/
457040

Table 1 Errors in Calculated Intervals (avg. errors/avg. interval size)

Speed is another desirable property of a legal times
algorithm.  Ideally, a legal interval generator would take
very little CPU resources to compute.  Table 2 shows the
average CPU time taken by each algorithm to compute its
estimation of the legal intervals.  Because the random
algorithm simply returns the whole interval it takes
effectively zero time.  We also observe that the informed
algorithm takes more time than the naïve algorithm.  This
not surprising as it must first transform the basic state and
resource reservations into non-interacting reservations,
then compute legal intervals for each, and then intersect
them.  The naïve approach need only perform the latter two
steps.

EO1 Rover DCAPS ST4

informed 1.8925 .025 .3528 .0315

naïve .1506 .025 .1090 .0300

random 0 0 0 0

Table 2 Average time to compute intervals, in seconds

Efficacy Assessment
We assess the efficacy of our algorithm in terms of

conflict reduction. We compare the number of conflicts
reduced for scheduling operations, and the effect this has
on solving combined planning/scheduling problems.

In terms of scheduling, ideally, placing an aggregate at
a time recommended by a legal times algorithm should
result in an improved schedule (i.e. one with fewer
conflicts).  Table 3 shows the average reduction in the
number of conflicts in the schedule after placement of the
aggregate.  Note that because having an unplaced activity
is a conflict, by default each algorithm gets a score of n if
there are n activities in the aggregate just for placing the

activity (i.e. in the absence of any state or resource
conflicts introduced or removed).  We see that the
informed algorithm strictly outperforms the others.

EO1 Rover DCAPS ST4

informed 21.2878 1.9042 25.2549 5.800

naïve 19.9978 1.8339 13.8416 0.9997

random 19.2978 -0.7837 21.4041 3.0785

Table 3 Effectiveness through conflict reduction

To assess the effect that the algorithm has in solving
planning/scheduling problems, we examine the number of
conflicts over time (in terms of CPU usage) and the total
number of problems solved for each domain.  If superior,
the informed search should result in faster reduction of
conflicts and more problems being completely solved.

We generate twenty random problems for each domain
and run ASPEN with twenty different random seeds for
each combination of problem and technique.  Note that we
do not guarantee that the problems are solvable.

We evaluate the performance of our technique versus
the performance of the naïve technique in terms of the
number of iterations to solve conflicts, amount of time to
solve conflicts, and the total number of problems solved
for each domain.

For the EO1 operations domain, the naïve technique
and informed technique perform similarly at first.  This is
because a number of the conflicts do not involve
interacting reservations and hence the naïve technique can
solve them.  However, many of the conflicts involve
interacting reservations.   Because  the  informed technique
correctly handles these interactions, it is able to solve these
conflicts.  Thus in the longer term the informed algorithm
is able to solve more conflicts in the schedule.

For the Rocky-7 Mars rover operations domain, the
informed technique appears to strictly dominate the naïve
technique.  Interestingly, conflict count rises before it falls
for both algorithms.  This is due to the added planning
necessary to solve conflicts.  Adding activities leads to
more conflicts initially, but eventually leads to solutions.

For the New Millennium ST4 Landed Operations
domain, the informed technique strictly outperforms the
naïve technique.  Conflict count rises before it falls as in
the rover domain and for the same reason, except the
algorithm employing the naïve technique never recovers.
Many of the activities in a group interact, therefore the
naïve technique often makes mistakes in recommending
placements for activity groups.  Because of this faulty
advice, repair using the naïve approach actually increases
the number of conflicts in the schedule.

For the DCAPS domain, the informed technique
strictly outperforms the naïve technique.  In this domain,
almost all of the activities in a group interact, leading to
similar consequences as the ST4 domain.

In terms of number of problems solved, we observe
that ASPEN employing the informed scheduling technique
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is able to completely solve (i.e., remove all conflicts) more
problems than ASPEN employing the naïve approach in all
five domains (Table 4).

EO1 Rover DCAPS ST4 total

informed 149/400 390/400 387/400 243/400 1169/
1600

naïve 60/400 243/400 1/400 0/400 304/
1600

Table 4 Problems Solved

These empirical results imply that aggregate reasoning
is effective in real domains, both in terms of number of
constraint violations repaired and in terms of overall time
to reach a desired solution quality, as long as we use an
informed scheduling function.  We have computed the
statistical confidence that the average final number of
conflicts using the informed search method is less than the
final number of conflicts using the naïve method.  For the
EO1, ST4, and DCAPS domains, this confidence is greater

than 99.9%.  For the Rover domain, this confidence is
greater than 98%.

Related Work
There are a number of related systems that perform both
planning and scheduling.  IxTeT (Laborie, P., Ghallab, M.
1995) uses least-commitment approach to sharable
resources that does not fix timepoints for its resource and
state usages.

HSTS (Muscettola, N. 1993) enforces a total order on
timepoints affecting common shared states and resources,
allowing more temporal flexibility.  We believe that our
technique is applicable in this case at a greater
computational expense (while still being polynomial), and
future research should address this issue.

Both IxTeT and HSTS are less committed
representations than our grounded time representation and
this flexibility incurs a greater computational expense to
detect and/or resolve conflicts.

Figure 5 Conflicts over time for domains
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O-PLAN (Drabble, B., and Tate A. 1984) also deals
with state and resource constraints.  O-PLAN’s resource
reasoning uses optimistic and pessimistic resource bounds
to efficiently guide its resource analysis when times are not
yet grounded.  Like ASPEN, O-PLAN also allows multiple
constraint managers which would enable it to perform
general reasoning when times are unconstrained and more
efficient reasoning in the case where all timepoints are
grounded (also enabling aggregate informed search as
described in this paper). SIPE-2 (Wilkins, D., 1998)
handles depletable/non-depletable resource and state
constraints as planning variables using constraint posting
and reasons at the same level of commitment as IxTeT.

(Cesta, Oddi S., and Smith S. 1998) apply constraint-
posting techniques to satisfy multi-capacitated resource
problems at the same level of commitment.
Depletable/non-depletable resource constraints are easily
transformed to multi-capacitated resource constraints.
None of these systems generally consider aggregate
operations in their search space.

Conclusion
This paper has described the use of informed

transformation techniques to improve the efficiency of
scheduling sets of interdependent activities.  We describe
our algorithm for processing interacting state and resource
requirements of a cluster of interdependent activities into a
set of independent requirements and use these to search for
placements for the activity set.  We show empirically that
our informed search method outperforms the alternative
approach of searching for legal placements on problems
from space exploration domains.
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Merging the Semantics of State Constraints for Collections of Activities
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Introduction

Coupling between activities can create a number of
practical problems for scheduling.  Aggregation of
activities and related constraints can reduce complexity,
allowing greater computational efficiency in scheduling.
This commentary is divided into

Comment on Motivation
Interactions between constraints on shared states and
resources are clearly a significant issue for scheduling.
One key point about scheduling activities individually is
that scheduling decisions are not commutative.  If you
determine that you can’t schedule a particular activity,
you need to consider whether or not to reexamine the
activities that are already on the schedule.  Attempting to
reschedule existing activities quickly causes one to run
into the “curse of dimensionality” and processing time
often becomes a practical limitation.  However, if you
don’t attempt rescheduling, underutilization of assets is
likely. It is only when all of the activities and constraints
are viewed simultaneously, that one can identify all of the
scheduling options.  Therefore, merging activities
effectively reduces the dimensionality of the scheduling
problem.

Another consideration is that some types of constraints
can be recast in the form of additional activities.  Use of
antennas for satellite ranging, for example, typically
requires a number of setup and configuration activities for
the antenna, in addition to the actual ranging data
collection.  Typically, those activities are just lumped
with the collection request.  This is inefficient, as it
doesn’t allow insight into situations in which multiple
requests from different users require the same antenna
configuration.  By treating the configuration as a separate
activity, which interacts with the collection activity, it
may be possible to achieve more efficient schedules.

A final practical motivation arises in a multi-user
environment, where political considerations can affect the
scheduling process.  Prioritization of tasks (done by some
external agency, rather than the developers of the
scheduling system) is typical in such situations.  Being
able to aggregate activities could eliminate some of the

flak when a lower-priority activity gets scheduled because
it has a positive interaction with a higher-priority activity,
while some activity with intermediate priority is bumped.

Modeling
The essence of the approach in this paper is the modeling
of activities as activities in terms of reservations and the
transformation of a set of individual reservations into a
related set of non-interacting reservations.  The wide
range of domain examples is interesting and relevant to
many other space-related scheduling applications.  The
effort involved in translating a domain into an expression
of a model could be considerable.  In practice, translating
scheduling problems into any modeling language is often
one of the hardest aspects of utilizing existing algorithms
and has been one of the reasons for the limited application
of several commercial software packages.

Solution Methodology
The concept of transforming the set of interacting
reservations, P, into a set of non-interacting reservations,
P’ appears to be a powerful method.  One area that isn’t
addressed explicitly, but is of considerable practical
importance, is conflict resolution.  A number of situations
are discussed in which no possible non-conflicting set of
intervals exists.  This information is often useful to users,
who may then redefine their requested activities.

Quality Measures - Accuracy
Random placement is effectively a worst case bound on
performance (and a best case bound for flexibility).  It
would be interesting to call out false positives vs. false
negatives when assessing accuracy.  Depending on the
exact problem, one may be more significant than the
other.  For example, if you have an undersubscribed
system, false negatives may not be a major concern,
although they’re undesirable from the standpoint of
producing an excessively conservative solution.  It’s
harder to think of a situation in which false positives
would be insignificant, but that might be the case where
some constraint can be violated temporarily.  For
example, a sensor tasking system may allow violation of a
power constraint for a brief period of time.
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Quality Measures - Speed
The difference in computational time for the informed and
the naïve approaches is considerably different for the
domains discussed.  The number of activities involved
(or, in particular, the activity group size) is clearly one
factor in how long it takes to solve a given problem, but
this is true for both scheduling algorithms.  How many
interactions there are between activities is probably
predictive of how much longer the informed approach
will take for a given algorithm, but this is not necessarily
obvious a priori for a given domain.

Of course, computational load is more significant for
some problems than for others.  A very stressing example
is near-real-time tasking of one sensor in response to an
observation by another sensor.  That case requires
detecting an event, recomputing the schedule, calculating
commands to slew the sensor to the new location, and
transmitting commands to the satellite (possibly via
ground relays, depending on satellite location) in a very
short amount of time.  Similarly stressing timelines arise
in other domains, e.g. weapon to target assignment for
ballistic missile defense.

Efficacy Assessment
Efficacy assessment is a broader issue than just
effectiveness in conflict resolution and the number of
problems solved.  Because the problems used for the
empirical evaluation here were generated randomly, it’s
not easy to place bounds on how many problems could be
solved.  That is, we don’t know how many solvable
problems the informed search method was still unable to
solve.  This is important because a lot of real world
problems are unlikely to solvable.  An oversubscribed
system can never schedule all of the requested activities
and, therefore, other metrics may be more appropriate in
those circumstances.

Conclusion
The background of this commenter includes sensor
tasking for surveillance applications, as well as
scheduling of antenna resources for satellite control
applications.  The focus of the commentary has, therefore,
been on considerations for practical applicability to
problems that arise in implementing schedulers in these
domains.  The commenter hopes that the issues raised in
this paper will highlight pertinent issues in broadening the
application of the methodology.

Questions?

Contact Miriam Nadel (miriam.nadel@aero.org)
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ABSTRACT
The X-ray Multi Mirror Module (XMM) spacecraft, an X-ray
observatory that was launched on 10th December 1999, is the largest
ESA scientific spacecraft ever built, with a mass of nearly 4 tonnes.
One of ESA’s cornerstone scientific projects, the objective of the
XMM mission is to obtain the most comprehensive survey of X-ray
sources, in total approximately 1,000,000 celestial targets are
expected to be observed. The XMM payload comprises 3 high
sensitivity X-ray imaging cameras, 2 high-resolution X-ray
spectrometers and one additional instrument covering the optical
wavelengths. The instruments are designed to be operated in parallel
so that efficient use of observation time is made.

This paper describes the planning constraints of the XMM mission
and explains the concept behind the mission planning process, in
particular how the activities of the Science Operations Centre (SOC)
and the Mission Operations Centre (MOC) are coordinated to make
the most of the observing time available for science taking. A
detailed description of how proposals for observing time are gathered
from members of the scientific community, how they are evaluated
and subsequently inserted in the XMM operations schedule, and how
telecommands are generated and uplinked to the spacecraft is
included.

Keywords: Mission planning, Proposal handling, Web-based system,
Scheduling, Simulated annealing.

Introduction

In common with previous scientific ESA missions, the planning and
operation of the XMM spacecraft and payload is achieved through
the interaction between two geographically distinct bodies. The
XMM Science Operations Centre (SOC) is responsible, among
other things, for planning scientific observations and processing and
archiving the resultant data. The XMM Mission Operations Centre
(MOC) controls the operations of the spacecraft and instruments and
ensures that the spacecraft’s safety is not compromised. A similar
high-level planning strategy was also used for ESA’s highly
successful observatory mission, the Infrared Space Observatory
(ISO) launched in November 1995 and operated until April 1998.

XMM is an observatory mission and as such its telescope needs to
be pointed towards x-ray sources. Because of the faint nature of the
x-radiation, XMM observations are usually long, in the order of a
few hours. The spacecraft orbits around the Earth with perigee and
apogee of approximately 7,000 and 114,000 km, respectively. Two

ESA ground stations, Kourou (in the French Guyana) and Perth (in
Australia) are used to command XMM and to receive its telemetry.
Except for a short period around perigee, the spacecraft is always
visible from one of the ground stations.

The paper describes the constraints imposed on the planning system
by the spacecraft, the instruments and the observation strategy.  The
remainder of the paper describes in detail the end-to-end mission
planning process, from the capture of a scientific proposal through
to the uplinking of spacecraft and instrument telecommands for
execution. In addition, an outline of the main planning tools and
techniques used in the SOC planning subsystems can be found.

Most of the MOC and SOC subsystems have been developed for
ESA by a consortium of European Industries lead by Logica (UK)
that included Dataspazio (I) and GMV (E).

Definitions

Before the planning process is described in detail, it is first useful to
define a few terms used throughout the paper:
Proposal - a proposal is defined to be a collection of observations
which can themselves be either scientific, calibration, or engineering
in nature. Proposals of scientific observations are the principal
proposal type and are created and submitted by the X-ray scientific
community.
Observation - an observation is the term given to a single, stable
‘pointing’ of the -X axis of the spacecraft, to which the instrument
boresights are nominally aligned. Thus, there is a single designated
target (a point on the celestial sphere) associated with each
observation. An observation consists of one or more exposures.
Exposure - an exposure is defined to be a single fixed configuration
period of an instrument. It is analogous to the notion of an exposure
for an optical camera, for which the term defines the camera settings
in terms of shutter speed and aperture size required to record an
optical image on film. Onboard XMM, exposures on the different
instruments can be made in parallel.

Planning Strategy

As there is almost always visibility from the XMM ground stations
of Perth and Kourou during science taking periods, the spacecraft
has been designed with limited on-board storage capability for both
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telecommands and telemetry. This implies that the operational
concept is to have the control loop closed at the ground. In this
context, the planning strategy for the XMM operations is one in
which:
• all science observations and associated operations are pre-

planned;
• all planned and contingency spacecraft and instrument

operations are performed under on-line command from the
MOC and the SOC in  real-time. That is, there is no onboard
time-tagged command schedule to be used for nominal
scientific operations. XMM does have an onboard time-tagged
command buffer, but this is to be used by the MOC only for
safety and security critical situations;

• there is limited onboard storage of science telemetry. All
scientific observation data is downlinked to ground in real-time
as it is obtained.

The science mission planning process is an off-line activity and can
be broadly broken down into 2 distinct areas: proposal handling and
observation sequence planning. These are described in detail later in
the paper.

Planning Constraints

There is a number of planning constraints that must be taken into
account by the mission planning systems in order to ensure that
instrument and spacecraft safety is not compromised. XMM
comprises 3 high sensitivity X-ray imaging cameras (EPIC -
European Photon Imaging Camera), 2 high-resolution X-ray
spectrometers (RGS - Reflection Grating Spectrometer) and one
optical instrument (OM - Optical Monitor). To operate the
instruments safely and to obtain good scientific data from the
instrument, XMM performs scientific observations only when its
altitude from the Earth is above the 40,000 km, i.e. above the
radiation belts. The pointing constraints that are imposed in order to
operate the spacecraft and its on-board instruments within safe
operating limits are as follows:
• the angle between the telescopic line of sight (-X axis) and the

sun direction must be 90° ± 20°;
• the roll angle must be less than 20°;
• during scientific observation periods, the telescopic line of

sight must be more than 47° from the earth limb and 22° from
the moon limb;

• outside scientific observation periods, the telescopic line of
sight must be more than 35° from the earth limb and 3° from
the moon limb.

Avoidance criteria are also likely to be applicable for other solar
system objects; these are, however undefined at the present time.

The pointing constraints imposed by the physical limitations of the
spacecraft sensors and the instruments are not the only constraints
that are observed during the planning process. The following

considerations fall into the category of operational constraints:
• time to perform routine space and ground segment maintenance

operations needs to be allocated as part of the routine planning
cycle;

• de-configuration of the instrument and spacecraft subsystems
prior to ‘unsafe’ events such as solar eclipse periods, entry to
perigee passage and so on, needs to be scheduled;

• de-configuration of the instrument and spacecraft subsystems
prior to the ‘apogee gap’ experienced once per orbit by the
spacecraft. This gap in ground station visibility arises due to
the adoption of the highly inclined 40 degree southern orbit
and lasts approximately 1 hour each orbit.

Proposal Handling

The start of the mission planning process is the capture, evaluation
and enhancement of proposals of scientific observations from the X-
ray community. This is called proposal handling.

Procedure
Proposal creation occurs in response to the Announcement of
Opportunity (AO) made by the XMM Project Scientist.
Representatives from the X-ray scientific community, Principal
Guest Observers (PGOs), are then invited to submit proposals for
scientific observations to the SOC where they are evaluated by SOC
staff in the next stage of the planning procedure. Proposals can be
created and submitted directly into a database of unevaluated
proposals by any scientist with access to a suitably configured
World Wide Web (WWW) browser. For those without access to a
browser, the procedure involves submitting the required observation
details to SOC staff directly (via e-mail or fax) who can enter the
information using a similar tool to that available to the external
observers.

All submitted proposals must undergo evaluation prior to being
made available for scheduling for the following reasons:
• to remove duplicate observations from being scheduled; the

XMM observing time is a valuable resource and in order to
meet the mission objective to observe 1 million celestial
targets, this must not be squandered. Various tools are
available to help the SOC staff responsible perform this
activity and to enable them to compare an unevaluated
proposed observation with evaluated and approved observation
requests;

• to ‘enhance’ the submitted scientific observations to ensure
that the maximum scientific return is obtained each individual
spacecraft pointing. Enhancing an observation can be achieved
by including additional instrument exposures for instruments
other than the designated prime one and by tuning the
spacecraft attitude to include objects of interest in the
instrument field of views additional to the designated
observation target.
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The evaluation procedures are carried out by Proposal Handlers,
SOC staff members, and by the Observation Time Allocation
Committee (OTAC). Approved observations are assigned a
scheduling priority that is used at the sequence generation stage of
the process to ensure that the highest priority observations are
included in the spacecraft operations. The principal stages of the
proposal handling process are shown in Figure 1.

Proposal Handling Tools
The Proposal Handling Subsystem (PHS) is the name given to the
collection of tools available to support the proposal handling
process. These are described below.

Remote Proposal Submission (RPS) - this is a WWW site
available to the scientific community and which provides proposal
creation, editing and validation functions. The RPS comprises a set
of Active Server Pages (ASP) written in Visual Basic and which use
an Open Database Connectivity (ODBC) interface to an underlying
ORACLE database, which stores the temporary proposal
information. By building certain instrument configuration ‘rules’
into the database and linking the ASPs to the database the tool
provides on-line validation at each stage of proposal creation.
Following the completion of the temporary proposal details, the
PGO can ‘submit’ the proposal, which effectively places the
information under configuration control within the main Proposal
Database (PDB) of the SOC. At this stage, the status of all
observations in the proposal is set to ‘Entry’.

Proposal Editor (PE) - this is the name given to the tool available
for use by the SOC staff only. This tool can be accessed via any
WWW browser and is based on the RPS in an attempt to ensure the
maximum commonality and re-usability of software. The functions
of the PE are however, much more sophisticated and enable the
Proposal Handler to specify instrument modes and configurations

not available to the scientific community. The PE is used by the
Proposal Handler to enhance a submitted proposal following
approval of the proposal from the OTAC. All modifications to the
original proposal are configuration controlled, so that previous edits
can be reinstated if required. In addition, the tool provides functions
to create new proposals; this enables instrument scientists at the
SOC to store ‘calibration’ and so-called ‘engineering’ proposals in
the PDB for inclusion in the routine mission planning observation
sequence. For instance, it is possible to carry out calibration of one
instrument by using its internal calibration source, while another one
is being used to observe a scientific target. In this manner, less
‘down-time’ of the instruments is required, thus increasing the
scientific efficiency.

Proposal Tools (PT) - there are a number of stand-alone tools
which are used by the Proposal Handler to evaluate the scientific
merit of an observation and to calculate additional information
required to configure the instruments for the series of exposures
within the observation. These are collectively called the Proposal
Tools and the various functions have been integrated into a single
Man Machine Interface (MMI) to provide the Proposal Handler with
a uniform procedure to control this activity.

Observation Sequence Planning

Observation Sequence Planning is the term given to the selection of
approved observations scheduling them in a time-ordered sequence
within a planning period (i.e. a period of time for which spacecraft
and instrument operations are being planned).

Procedure
The cycle for generating observation sequence schedules revolves
around a 2 week planning period and is based on the concept of
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Figure 1: Proposal Handling Stages
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Figure 2: Mission Planning Data Flows

‘filling in’ a skeleton, or outline, plan with increasing levels of detail
at each processing stage, until finally a complete operational plan is
created.
A number of different subsystems are involved in the evolution of
the skeleton plan into the final sequence of time-ordered
telecommands ready for uplinking to the spacecraft. The primary
systems involved in this process are:
• Flight Dynamics System (FDS), located at the MOC;
• Sequence Generation Subsystem (SGS), located at the SOC;
• Mission Planning Subsystem (MPS), part of the XMM Control

System (XMCS) located at the MOC.
The data flows between these systems and the associated timings are
shown in Figure 2. The process is initiated 28 days before the period
being planned is due to start, by the production of seven Planning
Skeleton Files (PSF) by the Flight Dynamics System (FDS) at the
Mission Operations Centre (MOC). Each PSF contains ‘windows’
of time for a single orbit, in which the SOC Sequence Generation
Subsystem is able to schedule observation time. Other periods of
time not available for scientific planning purposes (e.g. for
spacecraft or ground segment maintenance) are identified in the file,
along with orbit related events, such as eclipse information and star-
tracker operational characteristics, that must be used during the
planning of the observation sequence.

PSFs are received at the SOC by the SGS and are used, together
with the database of schedulable observations and the planning
constraint information, to produce a set of Preferred Observation
Sequence (POS) files and Instrument Command Parameters (ICP)
files. The POS is essentially an extended PSF, since it contains all
the PSF information, but includes additional data defining the
spacecraft attitudes required for each observation in the sequence
and the time-related observation and exposure commanding details.
The ICP is an auxiliary file used to contain the instrument command
parameters. Like the PSF, each POS and ICP pair contains
information pertaining to a single revolution. POS and ICP files, 7

pairs of files corresponding to 7 orbits, are sent back to the MOC,
14 days prior to the planing period starting. This is received by the
FDS, which checks that the observation sequence defined in the
POS is feasible with regard to the spacecraft pointing and
operational constraints. The FDS also generates the necessary
commands and parameters that are required by the spacecraft
Attitude Orbit Control System (AOCS) and Startracker (STR) on-
board systems to manoeuvre the spacecraft between the different
observation attitudes. The result of this processing is an additional
file pair, called the Enhanced Preferred Observation Sequence
(EPOS) and the Attitude Parameter File (APF).  These are basically
extensions of the POS and ICP files described earlier, and again,
there is one file pair per orbit being planned. The EPOS and the
APF files are submitted to the XMCS Mission Planning System less
than one week after reception of the POS/ICPs. There, they are
placed under configuration control and validated one final time
against the telecommand database before being used to generate the
Timeline and the Timeline Summary File (TSF). The timeline is
submitted to the XMCS Telecommanding Subsystem (TCS) for
uplink to the spacecraft and the TSF is transferred to the SOC as a
confirmation of the acceptance of the observation sequence.

Sequence Generation Tools
The Sequence Generation Subsystem (SGS) comprises a set of
manual and automatic tools to enable the Mission Planner at the
SOC to define the observation sequence. They are briefly introduced
below.

Session Manager (SM) - this controls the mission planning session
and provides a number of high level functions. For example, an
interface is provided to support the introduction of the PSFs from
the MOC along with simple viewing functionality to inspect the
files. In addition, the SM validates the POS/ICP files produced by
the Schedule Editor (see below) against the telecommand database
and initiates the transfer of the files to the MOC for further
processing.
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Schedule Editor (SE) - this is the primary planning tool used by
the Mission Planner. It is essentially a GUI editor, providing the
Mission Planner with visualisations of the planning and observation
data and also provides him/her with the functions to create and
manipulate an observation sequence, whilst enforcing all planning
constraints. The SE comprises 3 main displays: the Timeline View,
which is a temporal representation of the planning constraint
information and the observation sequence for the current planning
period; the Sky View, which is a spatial representation of the
celestial sphere (2 projections are provided, Aitoff and Orthographic
Sin), showing candidate and scheduled observations; and the List
View, which as the name suggests, is a text list of candidate
observation details. A snapshot of the main window that includes
the Timeline and the Sky views of the SGS SE tool is given in
Figure 3. These views give the Mission Planner all the information
s/he requires to produce and evaluate an observation sequence.
When used in manual mode, the SE enables the Mission Planner to
add and remove observations from the sequence, or to change the
order of existing observations, simply by selecting observations in
any of the views and pressing the button to perform the desired
operation.

Schedule Optimiser (SO) - this is an important automatic
scheduling tool available to the Mission Planner. It provides the
means to automatically create different observation sequence
solutions, based on a Simulated Annealing (SA) algorithm, which is
a simple extension to the ‘hill-climbing’ algorithm (see next bullet).
The schedule optimiser can be invoked by the mission planner at
any time while a schedule is being edited by the schedule editor

described above. The optimiser works by taking a copy of the
current schedule and then producing incrementally ‘better’ solutions
while it runs as a background activity. Each time an improved
schedule is created, it is saved to a different electronic file, which is
thus available subsequently for manual editing using the schedule
editor. When the mission planner invokes the optimiser, there are a
number of ‘directives’ that can be selected to ensure that certain
manual scheduling decisions are not overruled by the automatic
scheduling. For example, a time period which the optimiser is to
work on can be specified, so that other parts of the schedule remain
unaffected. Another example concerns the nature of the automatic
algorithm itself; during the optimisation the algorithm might choose
to remove an observation already in the schedule and replace it with
another observation from the candidate pool. This behaviour can be
prevented by manually ‘fixing’ individual observations in the
schedule prior to running the optimiser.
In addition, the ‘cost function’ of the algorithm (described in the
bullet point below) can be manually configured before running the
optimiser and the results compared with those produced by other
cost functions. One operational example of when a different cost
function might be used is if an instrument on board the spacecraft
fails, or its performance starts to degrade. In this scenario, the cost
function can be easily replaced with another one which prioritises
the use of the remaining operational instruments.

Simulated Annealing (SA) algorithm – it works by mimicking the
annealing process in a cooling metal, whereby the energy level of
the metal’s molecules is analogous to the energy level, or ‘cost’, of a
particular observation sequence solution. The solution cost is
evaluated by calculating a numeric value based on metrics of the

Figure 3: Snapshot of the XMM SGS Schedule Editor
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schedule which are deemed to contribute positively, or negatively, to
the quality of the sequence. For example, slew time, the time spent
by the spacecraft manoeuvring between observation targets, should
be minimised in order to spend the maximum amount of time
obtaining quality scientific data. However, this must be offset
against the requirement to schedule high priority observations,
which might be in a portion of the sky further away from the ideal,
minimal slew path. By evaluating how the cost of a solution changes
in response to variations, or perturbations, which are randomly
introduced, the algorithm can increase the quality of the solution. A
number of other controlling influences, or parameters, conditions the
decisions taken by the algorithm. Probably the most important of
these is the definition of a ‘cooling curve’. The cooling curve, as its
name suggests, mimics the natural process of reducing temperature
over time. This is used by the algorithm to determine the probability
that a perturbation that reduces the quality of a schedule will be
accepted before continuing with the next perturbation on the
schedule. This feature enables the algorithm to (potentially)
converge on a globally optimal solution in the domain, or solution
space, rather than simply converging on a localised solution, as
occurs in other techniques. The rate at which the algorithm ‘cools’
can impact the effectiveness of the algorithm; if it cools to quickly
the potential to find an optimal solution is reduced; cooling too
slowly might mean that the algorithm takes a very long time to
converge. The definition of the cooling curve is configurable in the
schedule optimiser code, enabling the mission planners to
experiment with different curves and to determine a suitable one for
the XMM planning problem.

Conclusion

The XMM mission planning process is based on the concept of
distributed responsibility. The SOC mission planning components
are responsible for scheduling observation time such that they meet
the safety and operational constraints imposed by the spacecraft
systems and instrument payload. Planning information is added
incrementally at different planning stages by MOC and SOC
subsystems until an operational schedule is produced. In this
manner, the complex planning problem is simplified into a number
of less complex and more manageable activities. Efficiency of the
XMM mission planning process can be assessed at a number of
levels. First, the number of data transfers (and system interfaces) has
been reduced from that used for the ISO model, thus reducing the
number of system interactions and making the overall system more
efficient procedurally. Second, where possible within the cost
constraints of the project, the SOC planning tools have been
designed with useful automatic functions to assist in the more time-
consuming aspects of the process. In addition, verification and
validation is performed as early in the planning process as possible
to reduce the number of instances where re-planning might be
required due to incorrect or incomplete data. Third, the mix of
automatic and manual tools to achieve good use of the observing
time available, is key to the design of the Sequence Generation
Subsystem; human operators provided with sophisticated
visualisation tools, are capable of creating good scheduling
solutions. Together with the automated support from the simulated
annealing algorithm, it is envisaged that very good efficiency will be
achieved. Finally, the design of the XMM spacecraft systems and

instruments ensures that as much useful information as possible is
obtained through parallel operation of the instruments. For some
instruments, serendipitous data may even be acquired during slews,
which are also scheduled via the SGS.

As of the time of writing this paper, the XMM mission planning is
being used to plan the actual mission since January 4th 2000.
Despite the limited experience that could be accumulated in this
short period, the mission planning process and the associated tools
are performing as expected with no major problem to report.
Currently, most of the XMM operations are executed using the
timelines generated using the planning process and tools described
in this paper. This confirms that our system can do the job for
XMM!
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        Commentary  
I find myself in agreement with the review: this paper describes 
what seems to be a mostly manual scheduling process, and does 
not get into enough detail to understand the obstacles towards 
further automation.  The reader is left with more questions than 
answers.  For example, the first sentence of the second 
paragraph of the introduction says, that there are significant 
differences between the spacecraft that result in differences in 
operational considerations that must be addressed by the 
planning system.  What are those differences? And how do they 
impact the planning process? 
 
Section 4 purports to answer some of these questions, but does 
not address the differences between XMM and ISO.  I am also 
left with many questions about the underlying rationale for some 
of the constraints.  Why must the roll angle be less than 20 
degrees? What is the eclipse season?  How often must routine 
maintenance be done? 
Why is there no on-board command buffer or on-board data 
storage?  
 
Some of the data in Table 1 looks like it might contain 
typographical errors.  Is the angular constraint on the reflection 
grating spectrometer relative to the moon limb really one minute 
of arc? And there is no unit on the constraint for the photo 
imaging camera relative to the Earth limb. 
 
One could envision an "ideal" planning system that would 
schedule the spacecraft based on on-line user requests with no 
manual intervention whatsoever.  Is this possible?  If not, how 
close could one potentially get, and what are the fundamental 
factors that would prevent further progress?  What do you see as 
the major problems that need to be solved in order to make 
progress in that direction?  (Do you even see that scenario as an 
ideal situation?  If not, why not?). 
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Abstract

In the Deep Space One project, temporal uncertainty
in a plan is taken into account through Temporal Con-
straint Networks in which one further distinguishes
between controllable and uncontrollable events. Two
properties have been introduced to check the validity
of such a plan, namely the Dynamic and the Waypoint
Controllabilities. This paper presents a possible way
to combine both of them for verifying such a plan be-
fore execution, using a game-based strategy based on
an automaton formalism, and shows how this tool may
model as well more complex reactive behaviours and
be used as an execution control tool.

Background and overview

Temporal Constraint Networks (TCN) (Schwalb &
Dechter 1997) rely on numerical constraint algebras and
are well-suited for modelling a temporal plan (Morris,
Muscettola, & Tsamardinos 1998) and check its tem-
poral consistency. In realistic applications the inherent
uncertain nature of durations of some tasks must be
accounted for, distinguishing between contingent con-
straints (whose e�ective duration is only observed at ex-
ecution time) and controllable ones (which instanciation
is controlled by the agent): consistency must then be
rede�ned in terms of the Dynamic controllability (Vidal
& Fargier 1999) which encompasses the reactive nature
of the solution building process in dynamic domains,
checking that a solution can be built in the process of
time, each assignment depending only on the previous
observations, and still needing to account for all the
possible remaining ones. Then Waypoint controllabil-
ity (Morris & Muscettola 1999) means there are some
points which can be assigned the same time of occur-
rence in all solutions, which allows to add wait periods
in a plan and hence partition it in more tractable sub-
parts. All that is recalled in next section.
Using a Dynamic controllability checking method

through a Timed Game Automaton (third section), the
paper shows how in planning this space costly process
can be con�ned in subparts using waypoints, and used
as a control execution tool (fourth section). Then some
hints are given about using the TGA for modelling more
complex reactive behaviours (last section).

Contingent TCN and Controllability
Temporal plans can be represented through Temporal
Constraint Networks (Schwalb & Dechter 1997) consist-
ing of time-points (graph nodes) related by constraints
(graph edges) that might be mere precedence (�) rela-
tions, or continuous binary numerical constraints de�n-
ing the possible durations between two time-points x
and y by means of temporal intervals: lxy � (y � x) �
uxy or cxy = [lxy; uxy]

1. A TCN is said to be consistent
if one can choose for each time point a value such that
all the constraints are satis�ed, the resulting instancia-
tion being a solution of the TCN. That can be checked
in polynomial time through propagation algorithms.
But one may wish to extend the expressiveness dis-

tinguishing between two kinds of time-points: the time
of occurrence of an activated time-point can be freely
assigned by the agent, while received time-points are
those which e�ective time of occurrence is out of con-
trol and can only be observed. This raises a correspond-
ing distinction between controllable and contingent con-
straints (Clb and Ctg for short): the former can be re-
stricted or instanciated by the agent while values for the
latter will be provided (within allowed bounds) by the
external world (see (Vidal & Fargier 1999) for details).
For instance, in planning, a task which duration is un-
certain and will only be known at execution time will
be modelled by a Ctg between the beginning time-point
which is an activated one and the ending one which is
a received one. The introduction of such uncertainty in
the STP results in the following de�nition of the corre-
sponding Contingent TCN.

De�nition 1 (CTCN) N = (Vb; Ve; Rg; Rc) is a
Contingent TCN with
Vb=fb1; : : : ; bBg: set of the B activated time-points,
Ve=fe1; : : : ; eEg: set of the E received time-points,
Rc=fc1; : : : ; cCg: set of the C Clbs,
Rg=fg1; : : : ; gGg: set of the G Ctgs.

In the following, a decision Æ(bi) will refer to the ef-
fective time of occurrence of an activated time-point bi,
and an observation !i will refer to the e�ective duration
of the Ctg between xi and ei.

1This is actually the restricted STP (Simple Temporal
Problem) where disjunctions of intervals are not permitted.
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In a CTCN, the classical consistency property is of no
use, since it would mean values for Ctgs can be cho-
sen. The decision variables of our problem are only
the activated time-points. And hence a solution should
be here, intuitively, an assignment of these activated
time-points such that all the Clbs are satis�ed, what-
ever values are taken by the Ctgs. This suggests the
de�nition of some controllability property. In (Vidal
& Fargier 1999), three di�erent levels of controllabil-
ity have been exhibited (we will barely focus here on
the Dynamic one), completed in (Morris & Muscettola
1999) by the Waypoint Controllability.

De�nition 2 (Situations and Schedules) Given
that 8i=1 : : :G, gi=[li; ui],
� 
 = [l1; u1] � : : : � [lG; uG] is called the space of

situations, and
! = f!1 2 [l1; u1]; : : : ; !G 2 [lG; uG]g 2 
 is called a

situation of the CTCN.
Then, for each time t, one can de�ne the current-

situation !�t � ! which is the set of observations prior
to t, i.e. such that only Ctgs with ending points ei � t
are considered.
� Æ = fÆ(b1); : : : ; Æ(bB)g 2 � is called a schedule, �

being the space of schedules (i.e. the cartesian product
of interval constraints (bi � b0))
Then, for each time t, one can de�ne the current-

schedule Æ�t � Æ which is the sub-schedule assigned so
far, s.t. 8bi 2 Vb with bi � t, Æ(bi) 2 Æ�t

In other words, a situation is one possible assign-
ment of the whole set of Ctgs, and a current-situation
with respect to t is a possible set of observations up to
time t. And a schedule is then one possible sequence
of decisions (that might be \controllable" or not), and
a current-schedule encompasses the notion of reactive
chronological building of a solution in plan execution.

De�nition 3 (Projection and Mapping)
N! is the projection of N in the situation !, built by

replacing each Ctg gi by the corresponding value f!ig 2
!. In (Vidal & Fargier 1999) a projection is proved to
be a simple TCN corresponding to a STP.
� is a mapping from 
 to � such that �(!) = Æ is a

schedule applied in situation !.

Intuitively, a CTCN will be \controllable" if and only
if there exists a mapping � such that every schedule
�(!) is a solution of the projection N!. In fact this is
only the \weakest" view of the problem (called Weak
controllability in (Vidal & Fargier 1999)), that assumes
that one knows the complete situation before choosing
one schedule that will �t. But when a plan is executed,
decisions are taken in a chronological way, and for each
atomic decision the agent knows the past observations,
but the observations to come are still unknown. The
Dynamic controllability property de�ned below takes
that into account.
The Waypoint controllability has been further intro-

duced in (Morris & Muscettola 1999), stating that there
are some points for which all the schedules share the

same time of occurrence, whatever the situation is2.
Those waypoints serve as \meeting" time-points in a
plan, when the agent waits for all the components of a
subpart of the plan to be over before starting the next
stage. Waypoints can be created during the planning
process through the addition of \wait periods" (Morris
& Muscettola 1999).

De�nition 4 (Dynamic/Waypoint controllability)

� N is Dynamically controllable i�
(1) 9� : 
 �! � s.t. �(!)=Æ is a solution of N!

(2) 8(!; !0) 2 
2, with Æ=�(!) and Æ0=�(!0),
8t, if !�t = !0�t then Æ�t = Æ0�t

� N is Waypoint controllable with respect to W �Vb i�
(1) 9� : 
 �! � s.t. �(!)=Æ is a solution of N!

(2) 8(!; !0) 2 
2, with Æ=�(!) and Æ0=�(!0),
8x 2 W , Æ(x) = Æ0(x)

Dynamic and Waypoint controllability are proven
to be exponential in the number of time-points. But
the complexity of Waypoint controllability is actually
exponential in the maximum number of time-points
between two waypoints (Morris & Muscettola 1999),
which means the more waypoints one considers in the
CTCN, the less complex is Waypoint controllability.

Clb
Ctg

g1=[ 30, 40 ] b1 e1

g2=[10,20]
b2 e2

(a)

g1=[10,30]b1 e1

[ 0, 10] 

g2=[10,20]
e2b2

(b)

g1=[20,30]

g2=[10,20]

e1=e2b1

b2

(c)

Figure 1: Illustrating controllability

Figure 1 exhibits a threefold example. In the �rst
case (a), one task is constrained to occur during the
other3. For instance that might be a data sending task
to an orbiter for a planetary robot that needs to be
achieved during a visbility orbiter temporal window,
both durations being uncertain. The second exam-
ple (b) shows two successive contingent tasks, with a
maximum (controllable) delay of 10 time units between
them. For instance a planetary rover might have to
send data within 10 seconds after having correctly di-
rected its antenna towards the orbiter. The third exam-
ple (c) shows two tasks, one activated after the other,
that should �nish exactly at the same time, though they

2We have chosen to restrict in some sense the original
Waypoint controllability de�nition that allowed the set W
to contain received events, since in general those would not
satisfy the Waypoint controllability property.

3Unlabelled arrows stand for simple precedence, that
should simply be [0;+1[ intervals in the TCN framework.
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both have uncertain durations. Obviously this last ex-
ample cannot be accepted as a valid plan, since no ex-
ecution can guarantee that the constraint will be met.
Interestingly enough, the three examples are all control-
lable in the weak sense (i.e. condition 1 holds), but only
examples (a) and (b) meet condition 2 of Dynamic con-
trollability, which �ts what one should expect in realis-
tic planning. Moreover, in example (a), one should get
that b2 must be activated at most 10 time units after b1
to ensure the satisfaction of the relation whatever values
are taken by !. Last, about Waypoint controllability, in
example (b), b2 shouldn't be set as a waypoint since the
time at which one can release the second task depends
upon the e�ective duration of the �rst one, and hence
cannot be set in advance. In (Morris & Muscettola
1999), Waypoint controllability is proven to be equiv-
alent to Dynamic controllability under some restrictive
conditions (see page 5), that unfortunately do not hold
in case (c) (W =fb1g satis�es Waypoint controllability:
actually it lets b2 depend on the outcome of !1 and !2),
hence Dynamic controllability still has to be checked.

Using Timed Game Automata

The method we present here relies on the timed au-
tomata model used for describing the dynamical be-
haviour of a system (Alur & Dill 1994). It consists in
equiping a �nite-state automaton with time, allowing
to consider cases in which the system can remain in a
state during a time T before making the next transition.
This is made possible by augmenting states and tran-
sitions with \continuous variables called clocks which
grow uniformly when the automaton is in some state.
The clocks interact with the transitions by participat-
ing in pre-conditions (guards) for certain transitions
and they are possibly reset when some transitions are
taken." Guards may be converted in staying conditions
(Asarin, Maler, & Pnueli 1995) in states.
Such tools are well-suited (Asarin, Maler, & Pnueli

1995) to real-time games for controlling reactive sys-
tems, where transitions are divided in two groups (such
as constraints in CTCN) depending on which of the two
players control it: the controller or the environment
(\Nature") and some states are designated as winning
for the controller. This extension of the classical dis-
crete game approach, with has the following features:
(1) there are no \turns" and the adversary need not
wait for the player's next move, and (2) each player not
only choose between alternative transitions, but also
between waiting or not before taking it". Finding a tra-
jectory (i.e. a path in the automaton) reaching a win-
ning state de�nes a so-called safety game policy. We
propose hereafter our own de�nition of a Timed Game
Automaton that follows those lines and will perfectly
�t our purpose.

De�nition 5 (Timed Game Automaton)
A = (Q;�;�; S;T) is a timed game automaton (TGA)
where
� Q is the discrete and �nite set of states qi, with

three special cases:
- q0 is the initial state,
- qok is the unique winning state,
- qy is the unique losing state;

� � = �b � �e is the input alphabet such that any
label in �b is of the form bi and any label in �e is of
the form ei;
� � = �sw [�et is the discrete and �nite set of clocks

and may be of any cardinality (i.e. one can de�ne as
many clocks as one needs), where �sw is the set of
clocks, on which are de�ned two sets of conditions and
actions:

- Re = f(swi 0) s.t. swi 2�swg is the �nite set
of all possible clock reset functions,

- Gu = f(li�swi� ui) s.t. swi2�; (li; ui)2ZZ2g is
the in�nite set of all possible clock conditions that will
be used as guards or staying conditions.
� S : Q ! Gu assigns staying conditions to states;
� T = Tb [Te � Q2 ��� Gu� Re is the set of tran-

sitions of the form
� =<q; q0; �; g; r> with a distinction between
- � 2 Tb is an activated transition iff � 2 �b,
- � 2 Te is a received transition iff � 2 �e.

For an activated transition, the controller decides the
time of activation by \striking" the clock at any time
within the two bounds of the guard, while a received
transition will be taken at some unpredictable time
within the bounds.

(Vidal 2000) provides a translation algorithm from a
CTCN to a corresponding TGA: an event in N will ap-
pear as a translation labelled with this event in A. Sim-
ilarly, temporal intervals in N will appear as guards in
A. The example of Figure 1(a) gives the corresponding
TGA in Figure 2, where on each transition one can view
the guard condition and the label above and the clock
reset below. Two clocks g1 and g2 are used by anal-
ogy with the corresponding contingent durations. One
can notice that the system is not a priori prevented to
receive e1 before e2, which would violate a constraint,
hence receiving e1 before e2 appears as a transition to
the losing state in the automaton.

Then (Vidal 2000) provides a synthesis algorithm
that checks Dynamic controllability, using controllable
predecessors operator that recomputes from a state q
the previous ones, revising the staying conditions so as
ensure the losing state cannot be reached any longer.
The operator is recursively applied from the initial set
of winning states until it reaches a �xed point. If q0 is
in the �nal set, then the controller can always win the
game. This is illustrated in Figure 2: in q2, g1� 30 is
added (and hence the transition to qy can be removed)
and propagated backward to q1: considering that one
may stay up to 20 time units in q2 because of the un-
controlled clock g2, then g1 shouldn't get to more than
30�20=10 time units in q1. This condition corresponds
to a restriction of the Clb (b2�b1) in the original CTCN.
Modifying the example by replacing the second Ctg

by g2= [25; 35] would as one should expect it lead the
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Figure 2: TGA interpretation of a CTCN

synthesis algorithm to fail, since adding the staying con-
dition g2�30 in q2 would not propagate back to q1 con-
sidering that one may stay in q2 up to 35 time units.
Hence one would get as a result that the CTCN is not
Dynamically controllable.

On the application of TGA in planning

Relevance and conditional nature of the
approach

Expressing and reasoning upon temporal uncertainty is
needed in most of planning and scheduling applications
such as the NASA project Deep Space One (Morris,
Muscettola, & Tsamardinos 1998; Morris & Muscettola
1999), where having to deal with contingent durations
means basing activation decisions on previous observa-
tions, as in Figure 1(b).
A more interesting example is the following. Let us

suppose the on-board computation system predicted
that a meteorit (that has been detected by a radar)
will pass at a minimal distance from the spatial vehicle
between 10 and 30 seconds from now. \Now" is the
time-point b1, and the radar will issue event e1 when
the meteorit is at minimal distance (i.e. when the dis-
tance starts increasing again). The automatic planning
system is given the goal to take a picture of the me-
teorit close enough to this ideal position, i.e. within
5 seconds before or after e1. This decision is mod-
elled by time-point b2. Besides one may easily suppose
that the picture should be taken the sooner the bet-
ter, after what the spatial vehicle is planned to change
direction to escape the area in which other meteorits
are expected ... Figure 3 shows the resulting synthe-
sized TGA: one shouldn't decide to activate b2 less than
25 seconds after b1, but if e1 is received before, then
just activate b2 within 5 seconds. This is Dynamically
controllable, but here one gets two completely di�er-
ent schedules depending on !1 being lower or greater
than 25, which corresponds to some kind of conditional

planning. Moreover, the TGA models a reactive oppor-
tunistic behaviour, since the activation of b2, initially
scheduled at 25, might be opportunistically made be-
fore on early reception of e1.

ok

b1

b2

e1

[-5,5]

g1=[10,30]

q1

10    sw     30

q2

q3

25    sw

q

sw    5

10    sw     30

q0 b1
sw:=0

b2

e1

b2

e1

sw:=0

Figure 3: An example of reactive behaviour

Hence the TGA implicitely models reactive be-
haviours and conditional plans, since two transitions
from the same state correspond to a branching (or
node), while in a CTCN time-points are and nodes.
Therefore, the CTCN formalism is a very powerfull tool
for describing the speci�cations of a dynamic system (as
e.g. a contingent plan), through the constraints it has
to meet, expressing rich temporal information in a com-
pact way. Whereas the TGA is a simulation model that
captures all the possible execution scenarii of the plan:
it has the advantage of providing eÆcient and robust
techniques to check its \safety", but runs the risk of
combinatorial explosion in the number of states.

The TGA as a plan execution control tool

Another strength of the TGA is that it can be directly
used as an execution supervisor tool, since the synthesis
not only checks Dynamic controllability but also gives
schedules of starting times for the planned tasks. More-
over, in constraint networks only a deterministic se-
quence of decisions is issued, whereas with a TGA one
can get a reactive execution supervisor, with disjunc-
tive possible trajectories, which makes it well adapted
to stochastic environments.

Complexity and practical eÆciency issues

As far as complexity is concerned, the algorithms for
building and synthesizing the automaton are respec-
tively linear and in logarithmic time in the number of
states, which is in the worst case pB , where B is the
number of activated time-points and p the degree of par-
allelism (i.e. the maximum number of time-points pos-
sibly occurring at the same time) (Vidal 2000). Hence
the complexity of the approach lies in the possibly ex-
ponential number of states developped, which depends
upon the network feature p.
This potential combinatorial explosion can be re-

stricted when the plan is mostly a sequence and there
are not so many events in parallel, which is often
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the case in space mission planning. Moreover, one
could use dispatchable networks (Morris, Muscettola, &
Tsamardinos 1998), that are TCNs in which redundant
constraints are removed and only minimal paths are ex-
hibited, so as to optimize propagation during execution.
This could restrict as well the number of states pro-
duced in the TGA. Besides, automata-based techniques
might be improved to reduce the number of states pro-
duced, considering that two subsequences containing
the same set of events, though in distinct orders, might
converge on the same state, or using more complex ab-
straction views (see (Asarin, Maler, & Pnueli 1995)).
One may also accept an incomplete checking algo-

rithm in the long term (based on incomplete propaga-
tions in the CTCN), using the TGA only in the short
term, as far as execution runs: the algorithm anticipates
the possible losing state deadends and can activate any
necessary recovery action in advance.
But the most promising idea seems to be the one that

follows : : :

An extended framework using TGAs and
waypoints

It is argued in (Morris & Muscettola 1999) that choos-
ing cleverly the set of waypoints through addition of
\wait" periods in the plan might lead to Dynamic con-
trollability being equivalent to Waypoint controllabil-
ity. Anyway, trying to design a plan in this way might
lead to a high number of waypoints lowering the plan
optimality: an opportunistic scenario like the one in
Figure 3 would not be possible. In other words, one
may compel the executed plan to \play for time" at
some points when it is not really needed.
But waypoints might be used merely to restrict Dy-

namic controllability checking in all subparts of the net-
works between any pair of waypoints: we need to prove
the following property, where N(x; x

0) stands for the re-
striction ofN to the time-points temporally constrained
to be after x and before x0.

Property 1 (Partitioned controllability) N is
Dynamically controllable i�

(1) N is Waypoint controllable wrt W � Vb, and
(2) 8(x; x0) 2 W 2s:t: x � x0 and 6 9x00=x � x00 � x0,

N(x; x
0) is Dynamically controllable

Sketch of proof. The proof is rather straightfor-
ward. Dynamic controllability means that a current-
schedule will only depend on the corresponding current-
situation. For any time t between two waypoints x and
x0, Æ(x) is set in all schedules, which means it does not
even depend on !�Æ(x), and any forthcoming decision
will not depend on it either. Consequently, Æ�t does
only depend on the part of the situation between Æ(x)
and t, which is equivalent to the formulation above. �

Then, a possible global algorithmic framework to
check Dynamic controllability could be to (1) use some
heuristic (to be de�ned at the planning engine level)

to decide to introduce wait periods or not while plan-
ning, and (2) check Dynamic controllability by build-
ing a TGA between any pair of successive waypoints4.
The idea is to introduce \not so many" waypoints in
the plan, so as to still meet in one hand high optimal-
ity requirements for the plan, while on the other hand
drastically reducing time and space complexity of the
TGA approach by only synthesizing automata corre-
sponding to subparts of the whole plan. This decom-
position technique hence o�ers a nice trade-o� between
expressiveness, optimality and eÆciency.

The full expressiveness of TGAs in

planning

The expressive power of TGAs is obviously larger than
what is used here, and might be of interest for other
planning problems.

Generalized conditional planning

A �rst obvious remark is about the relation between
the TGA model and conditional or reactive planning:
if the TGA allows to represent the inherent conditional
nature of a CTCN, then why not using it for di�erent
kinds of branching in planning ? For instance, consider
information gathering problems, in which a perception
action is included in a plan, and the next steps of the
plan depend on the outcome of this action. Or more
generally speaking, all cases in which non-determism of
actions has to be dealt with. If one wishes to represent
distinct evolutions of a plan, then this corresponds to
some disjunctions (or nodes) that are naturally repre-
sented in a TGA and may be smoothly merged with
temporal contingency branching. Hence TGA might be
used in such cases as well. The only di�erence is that
this kind of non-determinism cannot be represented in a
compact way in a CTCN, and one can hardly avoid the
use of or nodes in addition to partial order (i.e. and
nodes) in a temporal constraint-based planning graph.

Preprocessed plans and reactive planning

Sometimes a unique plan with branching nodes is not
enough to solve a problem. One may need to use a li-
brary of subplans to run in reaction to typical events.
For instance a planning system may produce a nominal
plan together with a number of alternative \recovery"
sequences to be runned in replacement when a mod-
eled disturbance occurs, as in (Washington, Golden, &
Bresina 1999). Instead of having those subsequences
connected to a node of the nominal plan, they may be
stored in a library and connected to a type of received
and unpredictable event, which de�nes a more general
kind of uncertainty than the one addressed in this pa-
per (not only the time of occurrence of the event is
unknown, but the occurrence of the event itself). Re-
ceiving this event will force the execution supervisor to

4Wait periods will by construction introduce waypoints
such that the network is necessarily Waypoint controllable,
which hence does not need to be checked.
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temporally abandon the current plan to run the corre-
sponding recovery sequence.
Then a more general reactive framework needs to be

designed, as in (Vidal & Coradeschi 1999): one can
de�ne temporal chronicles corresponding to each \ab-
normal" scenario, with the possibility of having several
\faulty" events in elaborated and rather complete sce-
narios. A purely reactive TGA framework can be de-
signed, where on-line automaton building is processed,
in reaction to received events: the system dynamically
matches the received event with the chronicles that con-
tain it, and synthesizes the possible next steps in those
chronicles in one unique incremental automaton.
By mixing the general o�-line planning framework

presented in this paper with this purely reactive be-
haviour, one get a real-time planning system that might
be very robust in stochastic environments.

Synchronization constraints

Last, sometimes so-called synchronization constraints
that are outside the scope of classical temporal algebras
may be useful. Three of them have been de�ned in
(Fargier et al. 1998):

Parmin Two \tasks" A and B are related by a parmin
if both starts at the same time and the �rst that
is �nished terminates the other as well (e.g. task of
recording a given sequence of signals from a meteorit
and a task waiting for the radar to notify that the
meteorit has got out of sight);

Parmaster This is the same as parmin, except that
only the �rst \task" in the relation forces the second
one to �nish at the same time (e.g. the previous ex-
ample with the length of the recording sequence not
predetermined);

Parmax Two \tasks"A and B are related by a parmax
if both starts at the same time and the �rst that is
�nished has to wait for the second one to �nish as
well before next steps in the plan are processed.

The two �rst ones are interruption-like behaviours,
while the third one is an \appointment" constraint. The
CTCN model cannot model these constraints: a parmin
for instance implies a ternary constraint (Fargier et al.
1998) between (1) the expected end of the �rst task, (2)
the expected end of the second task, and (3) the \e�ec-
tive end" of both, that will actually be one of the two
previous ones (we recall that in CTCNs only binary con-
straints are allowed). But interestingly enough, those
behaviours are implicitely conditional behaviours, and
are very easy to model through a TGA.

Conclusion

This paper has brought to light the advantage of us-
ing Timed Game Automata for checking dynamic tem-
poral properties of a plan in the presence of temporal
uncertainties. Discussing eÆciency and usefullness in
practice, it suggests the addition of heuristically and
sparingly selected wait periods in the plan to partition

it so as to be able to check the Dynamic controllability
property locally. The applicability of Timed Game Au-
tomata to more general conditional and reactive plan-
ning features may as well allow to address more real-
istic real-time planning problems in stochastic environ-
ments.
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Reactivity in a Space Mission Plan” 
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The author of these comments is not an authority in the 
area of planning and scheduling or on automaton 
formalism.  The commentator does have significant 
experience in the area of flight system development, test 
and mission operations. 
 
The author of the paper has proposed a mechanism for 
planning and scheduling using Time Game Automata for 
planning and scheduling problems.  The commentator will 
restrict his comments to only space based missions.   
 
Historically planetary missions pose sequencing problems 
that are solved in a serial manner regardless of the parallel 
function of the activities.  The author propose an approach 
that uses waypoints to restrict (control) dynamic 
controllability.  The approach seems to offers a nice trade 
between expressiveness, optimality and efficiency to help 
solve on board planning and scheduling problems that 
have historically been solved on the ground with humans. 
 
The commentator feels that this approach should be 
developed further and evaluated against parallel activities 
that occur on a spacecraft that would involve planning 
and scheduling.  The author uses a limited DS-1 example 
to illustrate the approach.  It would be beneficial to take a 
larger set of DS-1 activities and apply this approach to see 
if it truly offers an advantage. 
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Abstract

This paper reports on the development of the
Smart Workow for isr Management (swim)
system which has been designed to enable
complex systems, business and software, to
be controlled within the workow manage-
ment paradigm. The system exploits recent
advances within the ai community in reac-
tive control, scheduling and continuous exe-
cution. swim extends the workow paradigm
to respond to the dynamic and uncertain
environments by viewing the control pro-
cesses themselves as dynamic evolving enti-
ties. swim is being applied to the domain of
Information Surveillance and Reconnaissance
(isr), a highly reactive domain where contin-
ual and complex requirements for information
acquisition, analysis and distribution must
be satis�ed within a temporal and resource
constrained setting. Similar problems occur
in the space domain in the development of
missions, science experiments, payload check
out, etc. The swim system comprises two
main components: process manager and the
dynamic execution order scheduling system.
Details of both of these components are pro-
vided in the paper.

Introduction

Many applications in the space domain require
the close cooperation of a number of individuals
and groups e.g. assembly, integration and test,
mission management, science experiment planning,
etc. These applications can be categorized as a
number of agents (human and/or software) work-
ing together on a common task. The agents them-
selves can be within the same group or spread over
di�erent continents and time zones. For example,
the components of a spacecraft may come from dif-
ferent contractors, e.g. Rockwell, esa, etc, and
their design, development and integration is a com-
plex coordination task. In addition the agents can
be working on more than one task, i.e, resources

shared across multiple missions, e.g. Galileo, Voy-
ager, etc. Swim is designed to work at this coordi-
nation level and not at the level of controlling val-
ues, motors and engines. Coordinating and tasking
a group of agents raises a number of key research
questions:

� How to identify the best agent for a task? For
example, which of my three telescope schedulers
is the best for the task?

� If no agent(s) can be found for a task how can it
be divided into sub-tasks for which agents can be
found? For example, in house testing is no longer
available so what is the process to sub-contract
the work?

� How is information communicated between
agents, when and what should be sent? For
example, if the power speci�cation for a probe
changes which agents should be noti�ed?

� How can the workload on individual agent be
monitored and reallocated with minimum disrup-
tion? For example, if the solar panels are three
days late which agents should be reassigned?

As described above one of the key questions is deal-
ing with the dynamics of coordinating cooperating
and distributed agents. A task can fail for a num-
ber of reasons and the reason can be as simple as a
missed deadline e.g. the solar panels will be three
days late, through to the complete re-tasking of a
spacecraft program e.g. we are changing from so-
lar panels to nuclear fusion as the power source.
In most cases the failures can be solved by insert-
ing a few new tasks and modifying and/or delet-
ing others. However, these new tasks may cause
further knock on e�ects within the network with
some agents becoming overloaded and other sitting
idle. This process of task assignment and balanc-
ing is often referred to in the literature as process or
workow management. Many domains of interest
to the workow community are characterized by
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ever-changing requirements and dynamic environ-
ments. However, traditional workow systems pro-
vide only limited reactivity and exibility. Within
the ai community, work on reactive control has led
to the exploration of techniques for intelligent pro-
cess management to meet the requirements of adap-
tivity for dynamic and unpredictable environments.

This paper describes a revolutionary approach to
workow management using advanced ai planning,
scheduling, and reactive control techniques. The
system described has been built to manage the
highly dynamic processes involved in the intelli-
gence, surveillance and reconnaissance (isr) do-
main. The Smart Workow for isr Management
(swim) system comprises two main components:
process manager and the Dynamic Execution Or-
der Scheduler (deos). The function of the pro-
cess manager is to select and instantiate processes
to deal with events occurring in the domain. The
function of the deos is to develop a coherent sched-
ule for the each of the separate processes identi�ed
by the process manager. The schedule assigns re-
sources to each of the activities and tries to max-
imize the execution window for each activity. De-
tails of the process manager and the deos system
are provided later in the paper.

The system has been evaluated in the isr domain to
develop plans at the process level, i.e the develop-
ment of the overall isr plan, e.g. the development
of information needs, collection track generation,
etc. This would equate to the process of develop-
ing a mission from its inception, through to space-
craft assembly, veri�cation and launch. Changes
can occur in many places which require activities
being removed, added and in some case modi�ed,
e.g. the decision to sub-contract out a component.
The �rst version of the swim system was success-
fully demonstrated to the isr community in Au-
gust 1999. The deos has been separately evaluated
in the air campaign planning domain to generate
schedules at the process level, i.e. the development
of the overall strategy and at the the lowest level
to assign weapon/aircraft to tasks [Drabble 1999].

Motivation

This section provides an overview of the isr process
and shows the links between the problems faced by
isr planner and those faced by mission planners
and ground sta�.

Intelligence planners are faced with the task of coor-
dinating multiple Information Surveillance and Re-
connaissance (isr) assets to provide as much infor-
mation about the battle�eld as possible and thus
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Figure 1: Overview of CPED/PAR Process

increase the e�ectiveness of �elded forces. The isr
process is driven by Information Needs (ins) which
range in complexity from obtaining a complete pic-
ture of the electrical power grid of Bosnia to recog-
nizing whether a tank is at a location. Before as-
sets can be tasked with collecting the in a complex
planning process needs to executed. This includes
checking if the requested in is already in a database,
is tasked to platform, prioritizing it with other ins,
analyzing its overall information gain, etc. A sim-
ilar process exists in the mission planning domain
e.g. a request for an image of the North Atlantic.
The ins are divided into di�erent collection tasks
depending on time, resources needed, importance,
resolution, platform capabilities, risk, etc. The isr
collection (c) tasks cannot be considered in isola-
tion as they are inherently related to processing,
exploitation, dissemination (ped) tasks and pro-
cessing, analysis and reporting (par) tasks. This
is similar to the case in the space domain where
the designers of one component need to be aware
of the capabilities and needs of other component de-
velopers. The scenario being explored by the aim
project involves the fusion of cped/par tasks as
shown in Figure 1.

The development of the swim system is funded by
the darpa Advanced isr Management (aim) pro-
gram, which will provide isr planners with tools for
more e�ective and e�cient management of the as-
sets and information in the system. It will address
the complete isr management problem from the
strategic development of objectives to the manage-
ment of individual assets. From a swim perspective
all these tools (human and/or software) are viewed
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as agents that are capable of adding value to the
emerging isr plan. For these agents to work e�-
ciently, they must be organized and managed; that
is, a workow plan that describes how the problem
will be solved and identi�es the agents necessary to
support it must be developed. This will involve the
development of intelligent workow techniques that
identify when an agent should be tasked and which
tasks are appropriate for the agent to solve. The
use of intelligent workow management together
with information discovery and integration are the
keys to success in this domain.

ISR Process Modeling Methodology

The aim process de�nes the ways in which isr plans
are developed and communicated between agents.
Although this planning process involves activities
and their coordination, they are described in terms
of the activities that take place in the planning pro-
cess itself (such as plan, analyze, review) rather
than containing activities that relate to military ef-
fects (such as photograph, intercept). The activi-
ties are described using a set of \process verbs" in-
dicating the actions performed at the process level
e.g, plan, analyze, review and the process prod-
ucts that are created, modi�ed, used, and autho-
rized within the action. Examples of process prod-
ucts are the documents, reports, orders, letters, and
communications (formal or informal) and these are
viewed as resources within swim. Authority rela-
tionships and other conditions can also be modeled
and used as an extension of the basic mechanism.

Details of the development of the verb and pro-
cess product models can be found in [Berry
& Drabble 1999]. This framework is general
enough to be applicable across various di�erent
military domains e.g. logistics, and air cam-
paign planning, as well as many complex busi-
ness processes and distributed software applica-
tions. The verb/noun(s)/quali�er(s) (vnq) model
was adopted from a previous modeling exercise that
used a similar model to capture air campaign plan-
ning processes [Drabble, Lydiard, & Tate 1998].
The swim models are encoded in the act represen-
tation [Myers 1993], which can be directly executed
by the Procedural Reasoning System (prs). It is
hierarchical and provides a rich scheme for both
the representation of normative processes and the
derivation of new processes based on ai reasoning
and planning.

The swim System

The Smart Workow for isr Management swim
system is a multi-agent framework for performing
and managing complex tasks in dynamic and un-
certain environments. It provides taskability (i.e.,
the ability to formulate and execute processes to
achieve assigned tasks at di�erent levels of abstrac-
tion) and reactivity (i.e., the ability to adapt be-
havior based on changes in the operating environ-
ment). Tasks may be served by di�erent processes
and swim can select appropriate processes based
on context and adapt processes to reect new en-
vironmental or task features. Tasks may also in-
volve long-term commitments that require look-
ahead analysis; for this reason, generative planning
technology will eventually be used to compose new
plans from libraries of process building blocks (op-
erator templates).

swim leverages many of the reactive control capa-
bilities from cpef [Myers 1998], augmenting them
with advanced resource allocation, capacity anal-
ysis, and scheduling capabilities. cpef is a novel
continuous planning and execution framework em-
bracing the philosophy that plans are dynamic,
open-ended artifacts that must evolve in response
to an ever-changing environment. Plans are up-
dated in response to new information and require-
ments in a timely fashion to ensure that they re-
main viable and relevant, and replaced by alterna-
tives when they are not. swim similarly embraces
this philosophy, drawing a parallel between plans
and workow processes.

The Procedural Reasoning System (prs) [Myers
1997], a hierarchical reactive control system, is
used as both an executor for workow processes,
and a high-level controller for the overall system.
Advanced techniques to e�ectively schedule tasks
onto processing entities are drawn from recent work
on the Squeaky Wheel Optimizer (swo) [Joslin &
Clements 1998] and e�ectively integrated with the
process enactment using novel representations that
allow process activities to \breath" within tempo-
ral windows.

swim supports both direct models of execution, e.g.
actions performed by the system itself, and indirect
models of execution for which the system supervises
execution by a collection of distributed, e.g. a sub-
contractor for the solar panels. The indirect model
of execution is essential for domains where direct
control of processing entities is impossible, includ-
ing many classes of wfm problems. swim employs
a procedure library (encoded in the act represen-
tation language [Myers 1993]) providing a seamless
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Figure 2: Functional Overview of swim

transition between workow processes (also repre-
sented in act) and the internal control processes.
Elements of the library span multiple abstraction
levels and are usable for both process generation
and execution, thus supporting smooth transitions
between the two capabilities. Process expansion
and generation can proceed to arbitrary levels of
re�nement, with the executor applying additional
procedures at runtime to re�ne tasks to executable
activities. Process scheduling and execution oper-
ate asynchronously, in a loosely coupled fashion,
with agents communicating domain knowledge, ac-
tivities, requests, and situation information as re-
quired. Monitors are automatically created from
enacted processes and their constituent activities
based on content and context. Future work will de-
�ne a wide range of monitors, which will be used
to support the repair of both speci�c and general-
ized types of failure. To date, swim has not imple-
mented repair mechanisms but will be building on
minimal-perturbation dependency structure meth-
ods that have been extended to accommodate gen-
eralized failures in cpef and heuristic techniques.

The swim Architecture

The swim architecture, shown in Figure 2, is com-
patible with the wfmc's architectural de�nition
but has distinctive characteristics derived from the
�eld of ai.

Dynamic Process Manager, the hub of swim,
directing its overall behavior and responsible for
managing the instantiation of processes, their dy-
namic decomposition, their consolidation, the re-
lease of activities to the deo scheduler, the creation
of a monitoring plan, and recovery from failure.

Dynamic Process Selector, responsible for the
selection, adaptation and evolution of processes.
It responds to requests from the Dynamic Process

Manager with the appropriate process de�nition at
the required level of abstraction.

Process Library Server, maintains both tem-
plate processes and process building blocks (or op-
erator templates) from which new processes can be
generated by the Dynamic Process Selector.

Interface, supports interactions between the user
and swim and currently includes the ability to edit
processes in the Process Library, input requests
for information (information needs) and inform the
user of critical events and activities.

DEO Scheduler, responsible for the allocation of
activities to processing entities (agents) over time.
It also reasons about windows of opportunity aiding
the interaction with higher-level process reasoning.

Process Server, provides a store for multiple pro-
cesses at a variety of levels of abstraction, e.g. those
with scheduled activity information and those with-
out.

Process Monitor, monitors the execution state of
the activities and processes using trigger de�nitions
generated automatically by the Dynamic Process
Manager.

SIMFLEX (SImulated FLexible Execution) a prs-
based simulation environment developed to enable
testing, evaluation and demonstration of the dy-
namic workow management capabilities of swim,
[Myers 1998].

Dynamic Process Management

A unique feature of swim is the inclusion of an ad-
vanced procedural-based reactive controller. The
PRS-based controller is organized around an in-
terpreter that runs a tight control loop of sensing
to detect key changes in the environment e.g. the
design, development and launch of Cassini, or sets
of assigned tasks, deliberation to determine how to
respond to sensed changes, and acting to execute
relevant responses. This approach involves prede-
�ned procedure libraries describing processes that
can be performed to achieve some goal, or that
serve as appropriate responses to designated events
(for example, [Firby 1994; George� & Ingrand 1989;
Myers 1996; Musliner, Durfee, & Shin 1993; Howe
& Cohen 1991]). The bodies of these procedures
employ rich operations and control constructs that
provide a highly expressive method for representing
activity. As such, procedural reactive control is par-
ticularly well suited for the activity-based paradigm
for workow, although it could readily accom-
modate artifact and communication-based models
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through the introduction of appropriate ontological
constructs into the basic process description lan-
guages.

DEO Scheduler

The basic concept behind a deo is to generate
schedules quickly and to update them on the y
as new requirements and changes occur. A deo
schedule uses an expressive formalism that breaks
down the tasks into the constituent parts. These
parts reect a natural breakdown of the task from
a user perspective. In the case of the isr domain
the task is broken down into 4 sub-tasks forming a
structure called the paer model:

� Plan: Time to plan the task, e.g. to time taken
to identify which telescope scheduler should be
used. Once a plan has been identi�ed it is in-
serted in the slot for other tasks to examine and
check. This allows other tasks to identify why
the particular scheduler was chosen and the prod-
uct(s) it will generate, i.e. the telescope schedule.

� Acquire: Time to acquire the information neces-
sary to carry out the task, e.g. the observation
requests, weather information, etc.

� Execute: Time to carry out the alloted task, e.g.
time take to generate the schedule.

� Report: Time to �le or report the results of
the task, e.g. sending e-mail to the scientists,
database update, etc.

Each task is represented by a task speci�cation
block (tsb) composed of the paer sub-tasks. The
tsb can "breath" as changes in the domain are re-
ected as changes in one of the tsb's sub-blocks.
For example, if an agent chosen for a task develops
a problem during it's Acquire phase e.g. the com-
puter collating the observation requests crashes,
then the Acquire sub task will expand. Alterna-
tively, a second agent may be scheduled with the
task inheriting the results from the failing action.
An example of a partial paer network is shown in
Figure 3.

The more common reason for a tsb to change is due
to a \knock on" e�ect from another tsb. For exam-
ple, a change in the Report block of one task may
caused the Acquire block of a dependent block to
expand. By creating a dynamic link between sub-
blocks it becomes possible to quickly identify the
impact of a change and to identify an appropriate
set of repairs. Failures may also cause new tsbs to
be added to the schedule to deal with repairs. The
dependency links usually reect an interchange of
information between the tasks. The information
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Figure 3: PAER tasking structure

takes the form of products from a task e,g. reports,
orders, etc, which reect new information created
or updated by the task. Interactions between the
di�erent tsb's is handled by the squeakywheel al-
gorithm which is described later in this section.

A tsb can be generated in response to decision
made by other parts of the schedule, e.g. the use
of a particular test chamber might dictate that cer-
tain additional components are needed. If the test
chamber develops a fault and a di�erent test cham-
ber is used then the request for additional compo-
nents can be removed. The scheduler dynamically
launches a new tsb to deal with the chamber sub-
stitution and provides feedback to the user of the
changes. This approach also has the advantage of
hiding unnecessary information, e.g. the sta� op-
erating the replacement test chamber do not need
to know the details of the failure, just the time at
which the spacecraft should be available. By us-
ing the deo model to break the scheduling prob-
lem into smaller pieces it allows large scheduling
problems to become tractable and maintains the
necessary dependencies between the subproblems.
Similar task breakdown structures have been de-
veloped for other domains including, usaf mission
planning and cd manufacturing.

Squeaky Wheel Optimization (swo) The in-
sight behind swo is that in any real-world prob-
lem it is impossible to capture all associated con-
straints and that in most cases the context in which
the constraints apply cannot be easily determined.
swo uses a priority queue to determine the order in
which tasks should be released to a greedy schedul-
ing algorithm. The priority queue is determined by
how di�cult the task is to deal with that is, the
higher the task is in the queue the harder it is to
handle it correctly and not by some external pri-
ority identi�ed by the user. On each iteration of
the algorithm, swo quickly creates a schedule and
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then examines it to identify the parts that were
handled badly, for example, task was completed too
late or by an unsatisfactory agent. Any task that
\squeaks" is promoted up the priority queue, with
the distance it is promoted determined by the the
extent of the problem. The new priority queue is
then used to generate another schedule that is an-
alyzed for problems. This process continues until
no signi�cant improvement in the schedule is noted
over several iterations. swo is extremely fast with
each iteration taking less than a few seconds, even
for large problems.

Summary and Further Work

We have presented an overview of a system for
dynamic workow management. The swim sys-
tem and its generic tasking and process models
are applicable across a wide number of applica-
tions involving distributed agents (human and/or
software) working cooperatively to solve a task.
The swim system is work in progress and an ini-
tial version of the system has been successfully
demonstrated in August 1999 to the isr commu-
nity. The initial demonstration tackled problems
varying from lost assets to large scale re-plans, re-
source updates and changes in mission objectives.
swim provides the foundation for workow enabled
reactive control that includes an agent-based archi-
tecture, rich modeling and representation of pro-
cesses and their constituent actions, exible in-
tegration of process instantiation, task allocation
and execution, and highly reactive scheduling tech-
niques. Additional experiments have shown that
the deos scheduler (using a variation of the paer
task model) was able to generate and update sched-
ules for 2500 tasks in less than 5 seconds. Further
development of the swim system is planned with
the main foci being the full integration of the deos
scheduler, automatic process creation and evolu-
tion, advanced failure recovery and repair tech-
niques, and the maintenance and use of the dy-
namic dependencies between tasks at di�erent lev-
els of abstraction.

In introducing a system such as swim there are a
number of factors which need to be considered. One
of the main concerns is the availability of adequate
information on the tasks being performed and the
capabilities of the agents being tasked. For exam-
ple in the design phase it may not be case that a
task's duration can be accurately speci�ed. How-
ever, it is the case that the system can still perform
well with such data, but an answer of between 1
and 60 days may not be useful to a program man-
ager. The current simple models of agent capability

need to take into account a number of more real-
istic concerns, e.g. the change over time between
tasks, people's skills changing over time, the com-
bining of skills among agents, etc. It is expected
that these simplifying assumptions will be relaxed
as more experiments are carried out.
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Abstract
This is a short commentary on a paper appearing in this
workshop by Pauline M. Berry of SRI International and
Brian Drabble of the University of Oregon. Their paper
reports the development of a workflow management system
using AI techniques for reactive control, scheduling and
continuous execution. While developed for application in
information surveillance and reconnaissance, the authors
claim applicability to a variety of domains, including space.

Background

The commentary in this short report comes from the
perspective of someone steeped in interplanetary space
missions. This undoubtedly distorts the perspective that
can be brought to general applications of planning and
scheduling technologies for space, because in the
experience of this commentator the emphasis so far for AI
technologies in this narrower realm has been on increased
autonomy and other improvements directed toward the
flying vehicle.

The greatest challenge in commenting on the subject
paper has been to stretch this point of view to
accommodate the authorsÕ visionÑsomething that might
be more readily achieved by others. The following
commentary is offered in that spirit.

Setting a Context

Discussion of applications for planning and scheduling in
the space community has generally involved the following
key objectives:

• Automation of routine functions for reduced operations
cost

• Reduced development cost and schedule through higher
level programming and model based reasoning

• Reduced complexity and greater efficiency in the
deployment of limited resources

• Remote system autonomy in uncertain environments and
continued operation in the presence of faults

• Improved mission return through in situ analysis and
response

In many cases, these are old problems that are well
understood. They generally involve the minutiae of a
complex, tightly coupled system with many parts (like a
spacecraft, rover, or ground station), and organizing all
their many constraints and interactions within a context of
competing demands on the system. In a sense, one can
view the management process for such a system as
omniscient, in that an attempt, at least, is made to
understand everything and be ready for anything. The
principle issues in applying automated planning and
scheduling techniques in this domain are in marshalling all
the details needed to describe a system, in making it easy
for a team of diverse talents to do so and to operate the
resulting system, in getting these complex technologies to
meet embedded, real-time performance demands, and in
convincing a very conservative culture to place their trust
in a technology whose products often defy simple
explanation. Answers may not be easy, but at least the
criteria they need to meet are evident.

When we move into fresher territory and there are no
clear solutions to the problems at hand, short of applying
AI techniques, a host of difficult issues arise. Most
unsettling is the fading option of total understanding and
control. We accept this reluctantly, but not without a
reserved notion that, even in these cases, we retain a
perimeter around the problem that we can police. This is
possible because we have still tended to focus on fairly
narrow pursuits, such as the operation of a single vehicle in
an uncertain environment, or at worst a few systems, most
in relatively certain environments. Moreover, weÕve tended
to assume that uncertainty was largely resolvable, once
encountered. Discussion of planning and scheduling issues
in space applications has therefore tended to center around
a comparatively disciplined set of approaches.

A Place for SWIM?

SWIM, on the other hand, having addressed the world of
information surveillance and reconnaissance for DARPA,
has grown out of quite different situation in which the set
of assets to be managed is potentially vast, each asset or
objective may itself be a complex system with
idiosyncratic behavior (e.g., it can include people), goals
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are often only subjectively defined, constraints may be
soft, and so on. In some ways, this is a much harder
problem. Consequently, it seems forced to relinquish a
level of rigor that we have assumed for space applications.

Given this disparity, it was at first difficult to grasp how
one might bridge the apparent gap between the types of
problems SWIM purports to address and those more
typically bandied about when space is the subject.
However, following some dialog on this issue, the authors
have offered in their paper a number of examples tailored
to space applications that clarify the potential role for this
sort of approach. These examples encompass everything
from planning procurements to conducting testsÑnot the
usual sort of thing that comes up in debates over AI
applications in space.

Put in this light, the workflow management approach
described by the authors, while not of the prevailing kind
we generally expect, would nevertheless provide some
welcome discipline in processes that often appear to
sustain themselves on much more tangled fodder. That is,
rather than offering less rigor when considered for
unintended applications, SWIM appears to offer more rigor
than usual when applied as intended. The introduction of a
system like SWIM to a forum of space practitioners,
therefore, opens a new avenue of discussion largely
unexploredÑespecially in the unmanned sphere where
autonomy is foremost in the common dialog.

With this insight it is worthwhile to explore which
aspects of space applications might have the right tenor for
this approach. It is hard to imagine, frankly, whether some
of the processes we presently suffer could comfortably
tolerate the scrutiny such a system would impose. One can
certainly see opportunities in project development and test,
or in the complex logistics of something like a space
station.

More tractable, however, may be some real technical
challenges just on the horizon that will arise when present
ambitions for ubiquitous presence throughout the solar
system begin to be met. These systems begin to exhibit
characteristics similar to those described in the paper
(though smaller in scope). One can imagine, for instance,
several aerobots drifting through the atmosphere of Venus,
where it is the collective behavior of several vehicles that
must be managed, while for each vehicle individually,
behavior is potentially erratic, objectives are fuzzy, at best,
and assignments may change from one vehicle to another
as atmospheric whims dictate.

Closer to home, fleets of earth observing and
communication platforms grow harder  to manage every
year as numbers increase in bounds. As it becomes
necessary to address these units as one large coordinated
asset, workflow management systems may become
invaluable.

It really doesnÕt take too much effort to find examples
where this sort of thing could become important for space.

A Brief Assessment

SWIM may very well be a contender in this arena. Making
such an assessment from the paper, however, is difficult
since most of the interesting questions and issues that one
might wish to explore cannot be summarized in a short
paper. The authors properly motivated the work, and
provided a competent summary of the general structure,
but SWIM is a large system with many components, each
of which could be given only terse treatment.

Details on results so far were likewise short. The work
has been performed mainly for the information
surveillance and reconnaissance community, so more detail
about this application domain would probably have been
hard to extrapolate to space. In any event, a practical
assessment by the customer of this work would be more
illuminating as an indicator of proper bearing. In this vein,
the authors did offer a brief discussion of some of the
concerns they have in introducing such as system and
clearly indicate that much work remains.

What can be said is that where insight into the
philosophy behind the approach could be gained, the ideas
presented seem to be on track. Recognizing the importance
of a continuous planning and execution framework, for
instance, was gladly received.

It should also be mentioned that incorporated
components, such as the Procedural Reasoning System, the
Squeaky Wheel Optimizer, and others, will get a good
workout in this architecture, and if nothing else will offer
further validation for these items.

Conclusion

It is this commentatorÕs opinion that there is room for
systems such as SWIM in the discussion of planning and
execution technologies for space. Furthermore, there are
elements of SWIM which clearly have potential
application in more commonly discussed space
applications. There may even be straightforward
modifications of SWIM to these applications that can
exploit this potential. This would be worth exploring.

Regardless of the technology inside, though, the real key
for any such architecture is successful adaptation to a real
application fielded in the real world with real users. This
should be on the road map for any serious technological
endeavor. It will be interesting to see how SWIM evolves
in this regard.
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Abstract

Managing an Earth observation satellite consists in
building at regular intervals a feasible optimal sequence
of image acquisitions over a given time horizon. Up to
now this management was performed off-line and on the
ground by semi-automated mission control centers, un-
der the supervision of human operators. But the next
generation satellites shall be managed autonomously
on-line and on-board.
In this paper, after some background about Earth ob-
servation satellites and their management, we present
the potential advantages and drawbacks of an evolution
towards an on-line and on-board management. Then,
we present two versions of a scheduling algorithm, both
based onDynamic programming: the first dedicated to
off-line management and the second to on-line man-
agement. Finally experiments, using simplified models,
show that an on-line management, performed on-board
and using consequently limited computing resources,
may outperform an off-line management, performed on
the ground.

Background about Earth observation satellites
Orbit features
Earth observation satellites use circular polar sun-synchro-
nous phased orbits. Combined with the natural Earth rota-
tion, this kind of orbit allows any point of the Earth surface
to be flown over several times during the orbit cycle under
the same altitude and illumination conditions.

Depending on the orbit parameters, a revolution around
the Earth takes about one hour and a cycle about ten days.
Thus, depending on the latitude, the time between two suc-
cessive flights over a given point of the Earth surface ranges
between several hours and several days.

Image acquisition
Depending on the mission, satellites are equipped with var-
ious observation instruments (either optical or infrared in-
struments, radars . . . ). These instruments generally offer
various spectral bands and acquisition modes. With an op-
tical instrument, acquisition is possible only during the illu-
minated part of each revolution.

Image acquisition on both sides of the satellite ground
track is generally possible using either mobile mirrors in

front each instrument, or satellite manoeuvering ability.
Satellites of the next generation will offer manoeuvering
ability according the roll, pitch and yaw axes, and thus the
maximal flexibility for image acquisition.

Data delivery
Data associated with an image acquisition can be, either di-
rectly down-loaded, when the satellite is within the visibil-
ity window of a ground station, or recorded on-board and
down-loaded within one of the next ground station visibility
windows.

Uncertainty about accomplishment
With an optical instrument, the possible presence of clouds
may invalidate the image acquisition. In that case, the im-
age has to be acquired another time, using other acquisition
opportunities.

User requests
Users order image acquisitions, with associated require-
ments about the acquisition conditions: possible modes and
spectral bands, minimum and maximum pitch and roll an-
gles, minimum and maximum sun angle, either mono or
stereo acquisition, time window, possible cyclic acquisition
and associated constraints, grounds stations to which data
may be down-loaded . . . Priority levels or weights are gener-
ally associated with each user request.

Physical and technological constraints
The main physical constraint is associated with the instru-
ment resources: at any time, only one image can be acquired
using one instrument; moreover a transition time is gener-
ally necessary between two successive image acquisitions
(changes in acquisition mode, in mirror orientation, or in
satellite attitude).

The other constraints are associated with the energy and
memory resources. Energy and memory are consumed dur-
ing and between image acquisitions and are renewed via so-
lar arrays and data down-loading. One of the ways of taking
these constraints into account consists in defining for each of
them a maximum consumption by revolution or set of revo-
lutions, that guarantees that everything that is consumed will
be renewed.
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Managing an Earth observation satellite
Global view
Globally speaking, managing an Earth observation satellite
consists in building over a given time horizon a sequence of
image acquisitions that:

� satisfies all the physical and technological constraints as-
sociated with the satellite and its payload,

� satisfies the requirements associated with each user re-
quest,

� is optimal according to a criterion that is a function of the
set of selected requests.

Scheduling horizon
The scheduling horizon can range from one part of a revolu-
tion to several revolutions over one or several days. Large
horizons allow the global constraints such as energy or
memory constraints, as well as the several accomplishment
opportunities associated with each user request, to be bet-
ter taken into account. But large horizons induce very large
combinatorial problems and force to reason about to too un-
certain data (accomplishment of selected requests, arrival of
new requests . . . ).

Selection assessment criterion
Various assessment criteria may be used. The most used
is utilitarist: a weight is associated with each user request
and the objective is to maximize the sum of the weights of
the selected requests. But an egalitarist criterion might be
used: a priority level is associated with each user request
and the objective is to minimize the maximum level of all
the not selected requests. Subsequently, we will assume an
utilitarist criterion.

A constraint optimization problem
Thus, managing an Earth observation satellite implies to
solve a constrained optimization problem. When compared
with classicalOperations Researchproblems, this problem
lies somewhere between theJob-Shop Schedulingproblem
(tasks to perform, not sharable instrument resources, transi-
tion times between tasks) and theMulti-Knapsackproblem
(cumulative energy and memory resources)

Potential representation frameworks
It can be cast in any of the classical frameworks used to rep-
resent constrained optimization problems, such asInteger
Linear Programming(ILP; the criterion is linear and con-
straints can be linearized) orConstraint Programming(CP).

Potential solving methods
Any of the main associated methods can be used to solve it:
either optimal methods likeBranch and Boundor Dynamic
Programming, or approximate methods likeLocal Searchor
Greedy Algorithms.

For example, the specific management problem of the
French satelliteSpot5, described in (BLV99), has been cast
using theILP and CP frameworks (Cplex and Ilog Solver

tools), as well theValued Constraint Satisfaction Problem
framework (VCSP; an extension of theCSPframework to
deal with over-constrained problems (SFV95)). It has been
dealt with using associatedBranch and Boundalgorithms,
as well asLocal Searchor Greedyalgorithms.

Towards an on-line on-board management
system

Current management systems
Earth observation satellites are currently managed on the
ground and off-line: image acquisition and data down-
loading sequences over a given horizon are determined in
the frame of semi-automated mission control centers, under
the supervision of human operators and then up-loaded us-
ing satellite visibility windows.

On-line versus off-line management
That means that all the events that may occur between the
sequence up-loading and its execution and may affect the
user demand (arrival of urgent requests), the satellite state
(information about component failures), or the environment
(new meteorological forecasts), are not taken into account.

Only an on-line management, performed either on-board
or on the ground via an inter-satellite communication net-
work, can take them into account. But it is sure that such
a management may induce strong temporal constraints on
the reasoning task and consequently severe limitations of the
search.

On-board versus on the ground management
Managing on-board has undeniable advantages: direct avail-
ability of the information about the satellite state, indepen-
dence of visibility windows and of inter-satellite communi-
cation networks; complete automation and staff cost reduc-
tion . . .

It has also some known drawbacks: limited computing
and memory capacities available on-board, high reliability
requirements on the hardware and on the software, knowing
that they will run without any human supervision . . .

Evaluating before deciding
Before choosing, it may be interesting to run simulations,
in order to explore and to assess several trade-offs. That is
what we did within a simplified framework.

A simulation framework
A simplified satellite
For the sake of rapid prototyping, we chose to consider a
simplified satellite, inspired from theSpotfamily, but meth-
ods and algorithms could be extended to many more com-
plex cases.

This satellite has only one optical instrument. We assume
that it has only one degree of freedom according the roll axis
for image acquisition, provided either by a mobile mirror
in front of the instrument or by the satellite attitude control
system. Consequently, a fixed acquisition window can be
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associated with each image acquisition within a given satel-
lite revolution. We assume also that the transition time be-
tween two image acquisitions is a function of the attitude
difference of the mirror or of the satellite, necessary to ac-
quire both images. We assume finally that solar arrays and
on-board recorders are such that there is neither energy nor
memory constraint to check.

An off-line scheduling algorithm

We assume that the off-line computing of an optimal fea-
sible sequence is performed before the illuminated part of
each revolution for the whole of this part, from the north to
the south pole, on the basis of the information available at
this time. This can be easily performed by using anInverse
Dynamic Programmingalgorithm (LC78) based on the fol-
lowing recurrent equations:

if Rbef (r) = ; (1)

then EGopt�bef (r) = 0

else EGopt�bef (r) = maxr02Rbef (r)

[EGopt�bef (r
0)

+pe(t; r
0):g(r0)]

EGopt = maxr2R (2)

[EGopt�bef (r)

+pe(t; r):g(r)]

In these equations:

� R is the current set of requests that can be performed over
the whole of the illuminated part of the revolution, and
Rbef (r) is the set of requests that can be performed before
performingr, taking into account transition times;

� EGopt is the optimum expected gain that can be obtained
over the whole of the illuminated part of the revolution,
andEGopt�bef (r) is the optimum expected gain that can
be obtained before performingr;

� pe(t; r) is the estimated value at timet of the accomplish-
ment probability of requestr, andg(r) is the gain associ-
ated with its accomplishment.

An on-line scheduling algorithm

We assume that:

� before the beginning of the illuminated part of each rev-
olution, an optimal feasible sequence has been computed
using the above algorithm;

� following any event, like either user request arrivals or
removals, or new meteorological forecasts, a new fea-
sible sequence is computed, but resources and time are
no more necessarily sufficient to compute an optimal se-
quence over the whole of the remaining illuminated part
of the revolution;

� consequently, using a kind ofanytimeapproach (BD94),
only an optimal feasible sequence of lengthh, that is in-
volving h image acquisitions, is searched for, by begin-
ning with h = 1 and incrementingh each time it is pos-
sible, that is each time no new event interrupts the current
reasoning

This can be performed by using anInverse Dynamic
Programmingalgorithm based on the previous equations
slightly modified:

if [Rbef (r) = ;] _ [h = 0] (3)

then EGopt�bef (r; h) = 0

else EGopt�bef (r; h) = maxr02Rbef (r)

[EGopt�bef (r
0; h� 1)

+pe(t; r
0):g(r0)]

EGopt (h) = maxr2R (4)

[EGopt�bef (r; h� 1)

+pe(t; r):g(r)

+ÊGopt�aft (r)]

In these equations:

� EGopt�bef (r; h) is the optimum expected gain that can
be obtained before performingr, by selecting at mosth
requests;

� ÊGopt�aft (r) is an estimation of the optimum expected
gain that can be obtained after performingr, function
of the satellite state (time, either mirror or satellite atti-
tude . . . ) when ending requestr’s acquisition;

� EGopt (h) is an approximation of the optimum expected
gain that can be obtained over the whole of the illuminated
part of the revolution, computed when searching for an
optimal feasible sequence of lengthh.

Note that:

� everything that is computed when searching for an opti-
mal feasible sequence of lengthh is reused when search-
ing for an optimal feasible sequence of lengthh+ 1;

� the only benefit of an increase in the optimal sequence
length is a possible better choice of the next image to ac-
quire; the basic question in an on-line context is indeed:
What to do next ?

� in our current implementation, everything is computed
again from scratch in case of any event modifying the
problem data: user request arrivals or removals, new me-
teorological forecasts. . . but more sophisticated imple-
mentations could reuse at least one part of the previous
computing;

� in the context of this very simplified satellite, the gain
that results from the computing of an optimal feasible se-
quence of only lengthh is not obvious; it will be clearer
in the context of more realistic satellites, whereDynamic
Programmingon large horizons will be no more practica-
ble, off-line as well as on-line.
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Experiments
All the experiments we carried out compare an off-line
scheduling with an on-line scheduling, both on the illumi-
nated part of one revolution and both performed either on
the ground or on-board.

Modeling the user request flow
To carry out experiments, we need a model of the user re-
quest flow. We assume a set ofN randomly generated user
requests, known before the beginning of the illuminated part
of the revolution and a flow ofNa added requests andNr

removed requests, randomly generated too, within the illu-
minated part of the revolution.

Modeling the environment
We need a model of the cloudy cover. This model takes into
account the fact that indeterminism about the cloudy cover
decreases with the distancet between the current time and
the image acquisition time: whent is large, the accomplish-
ment probability is approximated via weather statistics; let
ps(r) be this approximation; whent decreases, the accom-
plishment probability evolves, either up to1 with a proba-
bility ps(r), or down to0 with a probability1� ps(r).

Modeling the environment forecasts
We need a model of the meteorological forecasts. This
model takes into account the fact that the distance between
the accomplishment probability and its estimation by mete-
orological services decreases witht: the lowert, the more
reliable the meteorological information. We assume that off-
line and on-line schedulings use meteorological information
provided respectivelyto� and ton hours before image ac-
quisition.

Modeling the computing power
Finally, we model the difference between the computing
power on the ground and on-board by a ratiocpron=o� be-
tween the latter and the former.

Experimental results
We carried out systematic experiments with:

� to� = 48 andton = 48 (first graph),24 (second graph)
or 1 (third graph);

� N = 150 andNa = Nr = 0, 10, 20, 30, 40, or 50;

� cpron=o� = 1=100, 1=10, 1, or 10.

Each parameter configuration has been tested on 500 ran-
domly generated scheduling problem instances. Each time,
what has been measured is the sum of the gains associated
with the user requests that have been selected, accomplished,
and not removed from the current satellite order book:Go�

for the off-line management andGon for the on-line one.
Each bar in the graphs of Figure 1 shows the mean gain (or
loss) (Gon � Go� )=Go� :100 that can be obtained by (or
results from) managing the satellite on-line and eventually
on-board.

We see on these graphs that:

Figure 1: Mean gain (or loss) obtained by (or resulting
from) managing the satellite on-line and eventually on-
board:(Gon �Go� )=Go� :100.
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� to have at one’s disposal more reliable meteorological in-
formation has no decisive influence on the results: the
three graphs have globally the same shape; but the meteo-
rological forecasting model we used may be questionable;

� the more dynamic the satellite order book, the more inter-
esting an on-line management;

� a minimum computing power on-board is necessary to
manage the satellite correctly: with a ratiocpron=o�
equal to1=100 between the computing power on-board
and on the ground, the gain is always negative.

Conclusion and future directions of work

The first lesson of this work is that an on-line and on-board
Earth observation satellite management system is feasible
and can outperform an off-line and on the ground one, in
the context of a dynamic user demand (numerous requests
known little time in advance), even if the computing power
available on-board is lower than the one available on the
ground. That means merely that, in this context as in other
contexts, a limited search performed on updated data can
outperform a systematic search performed on not updated
ones.

The second lesson is that, at least in the context of Earth
observation, building a schedule on a variable horizon, by
using eitherDynamic Programmingor Branch and Bound
methods, may be a good answer to the question of the bal-
ance between deliberation and reactivity: no frontier be-
tween them, more reactivity when it is necessary to decide
quickly, more deliberation when time is available for that.

Future directions of work may concern:

� the extension of this work to more realistic models of
satellite, user demand, environment, and forecasting;

� the design of more sophisticated on-line algorithms, that
can, for example, reuse previous solutions or reasoning,
when events slightly modify the problem data;

� the implementation on-board and the integration with the
other components of the satellite management (executive,
attitude and orbit control system, power management,
memory management, communication management, fault
diagnosis, identification and recovery. . . ), following the
work performed for theProbasatellite (BDS98);

� the use ofreinforcement learningtechniques (SB98) to
learn for example good approximations of the optimum
expected gain that can be obtained after a given image
acquisition (see section ).
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Abstract 
The paper reviewed [1] presents a simple but useful 
demonstration of an engineering trade study between an 
off-line (ground) and on-line (on-board) autonomous 
scheduling system. Of particular interest are the algorithm 
used and the results pertaining to the need, if any, for 
examining alternate observation permutations as well as 
the required computing power. 

Review  

The abstract mentions development of a “feasible optimal 
sequence.” It is important to realize that the sequence 
built is not optimal in most cases. The goal is to optimize 
the observations, but this is rarely accomplished because 
of the uncertainties in actually executing the observations. 
Worst case (2 or 3 sigma) estimates of execution times 
must be used to guarantee that the specified data is 
collected. For example, the nominal time to turn or slew 
the spacecraft to the observing attitude may be only a few 
seconds, but in order to guarantee that the observation 
will occur at the proper time, this value may be padded to 
a minute or more. This results in substantial 
inefficiencies. 
 
The author claims that an Earth-observing satellite may 
have an orbit of “about one hour.” In fact, astrodynamics 
requires that any sustainable orbit be at least 1.5 hours in 
duration. A typical Earth-observing satellite (e.g., 
Landsat, TOPEX) at 828 km altitude has an orbital period 
of 1.7 hours (101.5 minutes). There is also an implication 
that current satellites do not maneuver in all three axes 
(roll, pitch and yaw).  Actually, many current spacecraft 
can easily maneuver around all three principle axes. 
 
An important factor in planning which is mentioned is the 
time required to repoint the instrument for the next 
observation. This is very often a source of substantial 
inefficiencies in spacecraft operations, especially when it 
is necessary to reorient the entire spacecraft. In order to 
guarantee the proper orientation, a worst-case estimate of 
the time required is usually used. In a nominal case, then, 
much time is wasted waiting for the appropriate imaging 
time to arrive. A system that could accurately estimate 
on-board what the current repositioning rate is would be 
able to substantially reduce this inefficiency. 

 
The author notes that “the only benefit of an increase in 
the optimal sequence is a possible better choice of the 
next image to acquire.” This is a keen insight and key 
attribute of the algorithm described. The algorithm seeks 
to maximize the sum benefit from each set of 
observations considered. Thus, for k = 1, it simply picks 
the single observation with the highest benefit function 
value. For k = 2, the observations with the two highest 
benefit functions are selected since these, naturally, give 
the largest sum. This reasoning continues for any arbitrary 
k. Increasing k, in the absence of any new information, 
adds observations of declining benefit. Since it is not 
possible to find an unselected observation that is of 
greater benefit than any of those already selected, there is 
no overall benefit to changing the order of observations 
(again, assuming that no new information has become 
available). Hence, the only time to re-evaluate the next 
image to acquire is when new information arrives. 
 
The experiment performed demonstrated that the benefits 
of on-line scheduling are realized when the observation 
requests are most dynamic. This makes sense intuitively. 
It also makes sense that the trade of off-line vs. on-line is 
ineffective if the computing power of the ground system 
is much greater than that of the on-board system. The 
interesting result is that the on-board system must not be 
more than an order of magnitude slower than the ground 
system for there to be a positive benefit to performing the 
work on-board. 
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Abstract

On May 17th 1999, NASA activated for the first time
an AI-based planner/scheduler running on the flight
processor of a spacecraft. This was part of the Remote
Agent Experiment (RAX), a demonstration of closed-
loop planning and execution, and model-based state
inference and failure recovery. This paper describes
the RAX Planner/Scheduler (RAX-PS), both in terms
of the underlying planning framework and in terms of
the fielded planner.

Introduction
During the week of May 17th 1999, the Remote Agent
became the first autonomous closed-loop software to
control a spacecraft during a mission. This was done
as part of a unique technology validation experiment,
during which the Remote Agent took control of NASA’s
New Millennium Deep Space One spacecraft (Muscet-
tola et al. 1998; Bernard et al. 1999). The experiment
successfully demonstrated the applicability of closed-
loop planning and execution, and the use of model-
based state inference and failure recovery.

As one of the components of the autonomous con-
trol system, the on-board Remote Agent Experiment
Planner/Scheduler (RAX-PS) drove the high-level goal-
oriented commanding of the spacecraft. This involved
generating plans that could safely be executed on board
the spacecraft to achieve the specified high-level goals.
Such plans had to account for on-board activities hav-
ing different durations, requiring resources, and giving
rise to subgoal activities, all while satisfying complex
flight safety rules about activity interactions.

In this paper, we describe the Remote Agent Experi-
ment Planner/Scheduler from both the theoretical and
the practical perspectives. The architecture of the plan-
ning system is as shown in Figure 1. The domain model
describes the dynamics of the system to which the plan-
ner is being applied – in this case, the Deep Space One
spacecraft. A plan request, consisting of an initial state
and a set of goals, initializes the plan database. The
search engine then modifies the plan database to gen-
erate a complete valid plan, which is then sent to the
execution agent. The heuristics and planning experts
are not part of the core framework, but they are an in-
tegral part of the planning system that flew on board
Deep Space One. The heuristics provide guidance to

∗Authors in alphabetical order.
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Figure 1: The Planner/Scheduler architecture

the search engine while the planning experts provide a
uniform interface to external systems, such as attitude
control systems, whose inputs the planner has to take
into account.

Aadditional information about the theoretical and
practical aspects of RAX-PS can be found in (Jónsson
et al. 2000).

Theory

The RAX-PS system is based on a well-defined frame-
work for planning and scheduling that, in many ways,
differs significantly from classical STRIPS planning.
For instance:

• Actions can occur concurrently and can have differ-
ent durations.

• Goals can include time and maintenance conditions.

In this section, we will describe the PS framework from
a theoretical perspective.

Tokens, Timelines and State Variables

To reason about concurrency and temporal extent, ac-
tion instances and states are described in terms of tem-
poral intervals that are linked by constraints. This ap-
proach has been called constraint-based interval plan-
ning (Smith, Frank, & Jónsson 2000), and has been
used by various planners, including IxTeT (Ghallab &
Laruelle 1994). However, although our approach builds
on constraint-based interval planning, there are signifi-
cant differences. Among those are:

• The use of timelines to model and reason about con-
current activities

• No distinction between actions and fluents

• Greater expressiveness of domain constraints
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Figure 2: Plans as Parallel Timelines.

Humans find it natural to view the world in terms
of interacting objects and their attributes. In planning,
we are concerned with attributes whose states change
over time. Such attributes are called state variables.
The history of states for a state variable over a period
of time is called a timeline. Figure 2 shows Engine and
Attitude state variables, and portions of the associated
timelines for a spacecraft application (the attitude of a
spacecraft is its orientation in space).

In classical planning (Fikes & Nilsson 1971;
McAllester & Rosenblit 1991), and earlier interval plan-
ning, there is a dichotomy between fluents and actions.
The former specify states, and the latter specify transi-
tions between them. In terms of interval planning, this
has resulted in intervals describing only actions, and
fluent values being implicit. However, this distinction
is not always clear, or even useful. For example, in a
spacecraft domain, thrusting in a direction P can either
be regarded as a state that implies pointing towards P
or an action with pointing towards P as a precondition.
Moreover, during execution, the persistence of fluent
values over temporal intervals may be actively enforced
by maintaining and verifying the value. For these and
other reasons, we make no distinction between fluents
and actions in this planning approach, and use the same
construct to describe both fluents and actions.

From the point of view of execution, a state variable
represents a single thread in the execution of a concur-
rent system. At any given time, each thread can be
executing a single procedure P . A procedure P has nP
parameters (nP ≥ 0), each with a specified type. Each
state variable is also typed, i.e., there is a mapping
Procs : S → 2Π, where S is the set of state variables
and Π is the set of all possible procedures. Given a
state variable σ, Procs(σ) specifies the procedures that
can possibly be executed on σ.

Thus, a timeline consists of a sequence of intervals,
each of which involves a single procedure. We may think
of the interval and its procedure as a structural unit,
called a token, that has been placed on the timeline.
Although each token resides on a definite timeline in
the final plan, the appropriate timeline for a token may
be undetermined for a while during planning. We refer
to a token that is not on a timeline as a floating token.

A token describes a procedure invocation, the state
variables on which it can occur, the parameter values of
the procedure, and the time values defining the interval.
To allow the specification of multiple values, e.g, to ex-
press a range of possible start times, variables are used

to specify parameter, start and end time values for a
token. As a result, a token T is a tuple 〈v, P (~xP ), s, e〉,
where v is a variable denoting a state variable, P is the
name of a procedure (satisfying P ∈ Procs(v)), the el-
ements of ~xP are variables that denote the parameters
of the procedure (restricted to their types), and s and e
are numeric variables indicating the start and end times
respectively (satisfying s ≤ e).

Each of the token variables, including the parameter
variables, has a domain of values assigned to it. The
variables may also participate in constraints that spec-
ify which value combinations are valid.

Domain Constraints
In a complex system, procedures cannot be invoked ar-
bitrarily. A procedure call might work only after an-
other procedure has completed, or it might need to
be executed in parallel with a procedure on a different
thread.

To specify such constraints, each ground token,
T = 〈v, P (~xP ), s, e〉, has a configuration constraint
GT (v, ~xP , s, e), which we call a compatibility. It deter-
mines the necessary correlation with other procedure
invocations in a legal plan, i.e., which procedures must
precede, follow, be co-temporal, etc. Since a given pro-
cedure invocation may be supported by different config-
urations, a compatibility is a disjunction of constraints.
Therefore, we define GT (v, ~xP , s, e) in terms of pairwise
constraints between tokens, organized into a disjunctive
normal form:

GT (v, ~xP , s, e) = ΓT1 ∨ · · · ∨ ΓTn
Each ΓTi is a conjunction of subgoals ∧jΓTi,j with the

following form:

ΓTi,j = ∃TjγTi,j(v, ~xP , s, e, vj, ~zPj , sj , ej)

where Tj is a token 〈vj , Pj(~zPj ), sj , ej〉 and γTi,j is a con-
straint on the values of the variables of the two tokens
involved.

In general γTi,j may take any form that appropriately
specifies the relation between the two tokens. In prac-
tice, γTi,j is structured to limit its expressiveness and
make planning and constraint propagation computa-
tionally efficient. In the RAX-PS framework, γTi,j is
limited to conjunctions of:

• Equality (codesignation) constraints between pa-
rameter variables of different tokens.

• Simple temporal constraints on the start and end
variables. These are specified in terms of metric
versions of Allen’s temporal algebra relations (Allen
1984); before, after, meets, met-by, etc. Each
relation gives rise to a bound on the distance be-
tween two temporal variables. This bound can be
expressed as a function of the start and end vari-
ables of T and Tj .

• Constraints on how the token T can be instan-
tiated. These are represented as procedural con-
straints, which are an effective way to specify and
enforce arbitrary constraints.
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Subgoal constraints must guarantee that each state
variable is always either executing a procedure or
instantaneously switching between procedure invoca-
tions. This means that each ΓTi contains a predecessor,
i.e., a requirement for a Tj on the same state variable
as T , such that T met by Tj . Similarly, each ΓTi must
specify a successor.

The concept of subgoals generalizes the notion of pre-
conditions and effects in classical planning. For exam-
ple, add effects can be enforced by using meets sub-
goals while deleted preconditions correspond to met by
subgoals. Preconditions that are not affected by the
action can be represented by contained by subgoals.

Plan Database

Having laid out the representation of the planning do-
main, we can now turn our attention to what the plan-
ner represents and reasons about. In RAX-PS, this is
a data structure called the plan database. At the most
basic level, the plan database represents 1) a current
candidate plan, which is essentially a set of timelines
containing interrelated tokens, and 2) a current set of
decisions that need to be made.

Formally, a candidate plan consists of the following:

• a horizon (hs, he), which is a pair of temporal values
satisfying −∞ ≤ hs < he ≤ ∞

• a timeline Tσ = (Tσ1 , . . . , Tσk), for each state vari-
able, with tokens Ti = 〈v, Pσi (~x), s, e〉, such that
each Pσi ∈ Procs(σ)

• ordering constraints {O1, . . . , OK}, enforcing hs ≤
e(Tσ1) ≤ s(Tσ2) ≤ · · · ≤ e(Tσk−1

) ≤ s(Tσk) ≤ he for
each timeline Tσ
• a set of constraints {C1, C2, . . . , CN}, each relating

sets of variables from one or more tokens; includes
temporal, equality and local procedural constraints

The constraints in a candidate plan give rise to a
constraint network, consisting of the variables in the
tokens and the constraints that link token variables in
different ways. This network determines the set of all
legal instantiations of the given tokens. As a result, any
candidate plan that has an inconsistent underlying con-
straint network cannot be part of a valid plan. Limited
plan consistency checking can therefore be done by con-
straint propagation (Mackworth & Freuder 1985), which
is a method for eliminating values that can be proven
not to appear in any solution to the constraint network.

In addition to a candidate plan, the plan database
may also contain a set of decisions that need to be made.
A decision corresponds to a flaw in a candidate plan,
an aspect of the candidate that may prevent it from
being a complete and valid plan. In this framework,
there are four types of flaws: uninstantiated variables,
floating tokens, open disjunctions of compatibilities, and
unsatisfied compatibility subgoals. Each flaw in the plan
database gives rise to choices for how that flaw can be
resolved. Resolving a flaw is a reasoning step that maps
the given database to another database. Categorized by

the types of flaws, the following is a list of the possible
choices for resolving a flaw:

• Variable restriction flaws are resolved by selecting
a non-empty subset of the variable domain and re-
strict the variable to that domain.

• Floating token flaws are resolved by selecting two
adjacent tokens on a timeline and inserting the float-
ing token between them.

• Open disjunction flaws are resolved by selecting one
item in the disjunction and making it true.

• Unsatisfied subgoal flaws are resolved by either find-
ing an existing token and using that to satisfy the
subgoal, or by adding a new token to satisfy the
subgoal.

It is important to note that it is not necessary to re-
solve all flaws in order to have a plan. In most cases,
however, we require that each token satisfy the appli-
cable compatibility specification, i.e, that the subgoals
from at least one of the disjunctions are satisfied. In
that case, we say that the token is fully supported.

Executable Plans

Based on the notions we have introduced here, we can
now turn our attention to the semantics of a candidate
plan, and the task of developing a formal definition of
what a valid plan is. Traditionally, valid plans have
been defined in abstract terms, based only on the can-
didate plan and the domain model. However, this ap-
proach is not realistic, as the validity of a plan in the
real world is inherently tied to the mechanism that ex-
ecutes it. To address this, we start by discussing the
basics of plan execution and then go on to derive a re-
alistic definition of what constitutes a valid plan.

From the point of view of the executing agent (called
the executive or EXEC) a plan is a concurrent program
that is to be interpreted and executed in a dynamic
system. Recall that the plan contains variables that
specify how and under which circumstances procedures
are to be instantiated. For variables that correspond
to system values, such as the current time, the EXEC
will sense actual system values, compare them with the
values specified in the plan, and then determine which
procedure should be executed next. If the EXEC fails
to match sensed values with the values in the plan, the
EXEC triggers a fault-protection response (e.g., put the
system in a safe state and start taking recovery actions).
The question of whether the EXEC succeeds in match-
ing values and selecting a procedure invocation depends
in part on how much reasoning the EXEC can perform
for this purpose. That, in turn, depends both on how
much reasoning the EXEC is capable of and how much
time it has before the next invocation must be acti-
vated.

Consider a candidate plan; tokens may not be fully
supported, and variables may be uninstantiated. In
order to instantiate the candidate, each flaw must be
resolved successfully. For an execution agent with suf-
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ficient time and reasoning capabilities, such an under-
specified plan might be a viable plan. In fact, the lack of
commitment would allow the execution agent to choose
the flaw resolutions that best fit the actual conditions
during execution. The Remote Agent system took ad-
vantage of this by letting the EXEC map high-level
tasks into low-level procedures, during execution. This
freed the planner from generating low-level procedure
calls, and allowed the executive to choose the low-level
procedures that best fit the actual execution.

In general, executability depends on the execution
agent in question. It depends primarily on two aspects;
how flexible the candidate plan must be to cover possi-
ble system variations, and how restricted the candidate
plan must be for the executive to identify whether it
is executable. The latter is an important issue to con-
sider, as making this determination can be as expensive
as solving a planning problem.

To represent the abilities of a particular executive
agent, we use a plan identification function fI that iden-
tifies executable candidate plans, by mapping each pos-
sible candidate plan to one of the values of {T, F, ?}.
The intent is that if a candidate P can be recognized as
being executable, then fI(P) = T ; if a candidate is rec-
ognized as not being executable, then fI(P) = F ; and
if executability cannot be determined, then fI(P) =?.

We permit a great deal of variation in how different
executives respond to different candidate plans, but we
do require that a plan identification function behaves
consistently with respect to the two aspects mentioned
above. For example, the function should not reject one
candidate on the basis of being too restrictive and then
accept a restriction of that candidate. This leads us to
the following formalization of what constitutes a plan
identification function:

Definition 1 A plan identification function fI for a
given execution agent is a function that maps the set of
candidate plans to the extended truth value set {T, F, ?},
such that for any candidate plan P and any candidate
plan Q that extends the candidate P, we have:

• if fI(P) = F then fI(Q) = F

• if fI(P) = T , then fI(Q) ∈ {T, F}

• if a token in P is not supported, then fI(P) =?

The last condition is not strictly necessary, as some ex-
ecutives are capable of solving planning problems, but
in the interest of clarity, we will limit the execution
agents to solving constraint satisfaction problems.

Using this notion of plan identification functions, we
can now provide a realistic, formal definition of what
constitutes a plan, namely:

Definition 2 For a given executive, represented by a
plan identification function fI , a candidate plan P is a
plan if and only if fI(P) = T .

Planning process

We can now turn our attention to the plan generation
process itself. The input to the planning process is an

plan (P,D) {
if f(P) = T
return P

else if f(P) = F
return fail

else
given a flaw d from the flaw database D,
choose a resolution res(d) for the flaw
let (P’,D’) = apply res(d) to (P,D)
return plan(P’,D’)

}

Figure 3: The planning process. The plan database
consists of the candidate plan P and the set of flaws D.

initial candidate plan, which includes an initialization
token for each timeline, a set of floating tokens, and a
set of constraints on the tokens in question. Together,
these elements give rise to an initial plan database. The
goal of the planning process is then to extend the given
initial candidate to a complete valid plan. From the
point of view of traditional planning, the initial plan
database specifies both the initial state and the goals.
In fact, our approach permits a much more expressive
specification of goals. For example, we can request a
spacecraft to take a specified sequences of pictures in
parallel with providing a certain level of thrust.

The planning process we define is a framework that
can be instantiated with different methods for control-
ling the search, selecting flaws, propagating constraints,
etc. The planning process is a recursive function that
non-deterministically selects a resolution for a flaw in
the current plan database. An outline of the process is
shown in Figure 3.

This planning process is clearly sound, as any result-
ing plan satisfies the given plan identification function.
The planning process is also complete in the sense that
if there is a plan, then a plan can be found. Further-
more, if a given initial candidate plan can be extended
to some valid plan P (satisfying fI), then the planning
process can find some other valid plan (satisfying fI)
that can be extended to P . A still stronger complete-
ness criterion, that any given plan can be found, does
not hold in general. The reason is that a lenient iden-
tification function fI may return T even though the
planning process has not addressed all remaining flaws.
This highlights the importance of identifying properties
of soundness and completeness for new planning frame-
works such as this one.

Theorem 1 Suppose a domain model, a plan identifi-
cation function fI , and an initial plan P0 are given. Let
PT be a valid plan (i.e., fI(PT ) = T ) that extends P0.
Then, the planning process can generate a valid plan P ′

that extends P0, and can be extended to PT .

Practice
RAX PS extends the theoretical framework into a well-
engineered system. The system had to operate under
stringent performance and resource requirements. For
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Model size: State variables 18
Procedure types 42

Plan size: Tokens 154
Variables 288
Constraints 232

Performance: Search nodes 649
Search efficiency 64%

Table 1: Plan size and performance of RAX PS

example, the Deep Space 1 flight processor was a 25
MHz radiation-hardened RAD 6000 PowerPC processor
with 32 MB memory available for the LISP image of
the full Remote Agent. This performance is at least an
order of magnitude worse than that of current desktop
computing technology. Moreover, only 45% peak use
of the CPU was available for RAX, the rest being used
for the real-time flight software. The following sections
describe the engineering aspects of the RAX PS system.
First we describe the planning engine, the workhorse on
which all development was founded. Then we describe
the mechanism for search control used to fine-tune the
planner.

RAX PS planning engine

As follows from the previously discussed theory, pro-
ducing a planner requires choosing a specific plan iden-
tification function fI , a specific way to implement non-
determinism and a flaw resolution strategy. In RAX PS
we designed the planner in two steps. First we defined
a basic planning engine, i.e., a general search proce-
dure that would be theoretically complete. Then we
designed a method to program the search engine and
restrict the amount of search needed to find a solution.
In this section we talk about the planning engine.

The first thing we need to clarify is what constitutes
a desirable plan for the flight experiment. RAX plans
are flexible only in the temporal dimension. More pre-
cisely, in a temporally flexible plan, all variables must
be bound to a single value, except the temporal vari-
ables (i.e., token start and end times, s and e). It is
easy to see that under these assumptions the only un-
instantiated constraint sub-network in the plan is a sim-
ple temporal network (Dechter, Meiri, & Pearl 1991).
This means that the planner can use arc consistency
to determine whether the plan can be instantiated and
that the executive can adjust the flexible plan to ac-
tual execution conditions by using very fast incremen-
tal propagation (Tsamardinos, Muscettola, & Morris
1998). All of this is translated into a plan identifica-
tion function fI defined as follows: When applied to
a candidate plan, fI checks its arc consistency. If the
candidate is inconsistent, fI returns F . If the candidate
is arc consistent, fI returns one of two values: T if the
candidate is fully supported and all the non-temporal
variables are grounded, and ? in any other case.

To keep a balance between guaranteeing complete-
ness and keeping the implementation as simple as pos-
sible, non-determinism was implemented as chronolog-
ical backtracking. Also, the planner always returned

(:subgoal
(:master-match (Camera = Ready))
(:slave-match (Camera = Turning_On))
(:method-priority ((:method :add)(:sort :asap))

((:method :connect))
((:method :defer)))

(:priority 50))

Figure 4: Search control rules for unsatisfied subgoal

the first plan found. Finally, the planning engine pro-
vided a default flaw selection strategy at any choice
points of the backtrack search. This guaranteed that
no underconstrained temporal variable flaw would ever
be selected, while all other flaw selection and resolutions
were made randomly.

Search control

By itself, the basic planning engine could not generate
the plans needed for the flight experiment. However,
RAX PS included additional search control mechanisms
that allowed very localized backtracking. This is re-
flected in the the performance figures in Table 1, where
search efficiency is measured as the ratio between the
minimum number of search nodes needed and the total
number explored.

Achieving this kind of performance was not easy and
required a significant engineering effort. We outline the
principal aspects of this effort in the rest of the section.

Flaw agenda management RAX PS made use of a
programmable search controller. Ideally, the “optimal”
search controller is an oracle that can select the correct
solution choice without backtracking. In practice this
is not possible and the control strategy can only make
flaw resolution decisions on the basis of the partial plan
developed so far. The search controller of RAX PS al-
lows programming an approximate oracle as a list of
search control rules. This list provides a prioritization
of the flaws in a database and sorting strategies for the
non-deterministic choices for each flaw selection. Fig-
ure 4 gives an example of a search control rule.

The rule applies to an unsatisfied subgoal flaw
of a 〈Camera, Ready, s, e〉 token that requires a
〈Camera, Turning on, sk, ek〉 token. Note that in the
DS1 model the Camera can reach a Ready state only
immediately after the procedure Turning on has been
executed. Therefore, in this case, matching the token
types in the subgoal is sufficient to uniquely identify
it. When the priority value associated with the flaw is
the minimum in the plan database, the planner will at-
tempt to resolve the flaw by trying the resolution meth-
ods in order. In our case the planner will first try to
:add a new token and try to insert it in the earliest
possible timeline gap (using the standard sort method
:asap). The last resolution method to try is to :defer
the subgoal. When this happens, the plan database will
automatically force start or end of the token to occur
outside of the horizon hs. In our case, the deferment
method will only succeed if the Ready token is the first
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token on the timeline.

Search control engineering The rule language for
the search controller is designed to be extremely flexi-
ble. It permits the introduction of new sorting methods,
if the standard methods prove to be ineffective. Also, it
is possible to prune both on solution methods (e.g., only
:connect to satisfy a subgoal) and on resolution alter-
natives (e.g., schedule a token as early as possible and
fail if you cannot). Unfortunately, this meant that com-
pleteness could no longer be guaranteed. On the other
hand it allowed for a finely tuned planner. Designing
search control became a trade-off between scripting the
planner’s behavior and exploring the benefits of shallow
backtracking when necessary. Here are some issues that
needed to be addressed.

Interaction between model and heuristics: Ide-
ally, it is desirable to keep domain model and search
control methods completely separate. This is because
constraints that describe the “physics” of the domain
should only describe what is possible while search con-
trol should help in narrowing down what is desirable
from what is possible. Moreover, declarative domain
models are usually specified by domain experts (e.g.,
spacecraft systems engineers) not by problem solving
experts (e.g., mission operators). Commingling struc-
tural domain information with problem solving meth-
ods can significantly complicate inspection and verifi-
cation of the different modules of a planning system.

In our experience, however, such an ideal separation
was difficult to achieve. Model specifications that were
logically correct turned out to be very inefficient be-
cause they required the discovery of simple properties
by extensive search (e.g., a token being the first of a se-
quence of tokens with the same procedure). The stan-
dard method used in RAX-PS was to define auxiliary
token variables and use search control to enforce a spe-
cific value, which in turn would prune undesired alter-
natives through constraint propagation. Including the
control information within the model caused a signif-
icant level of fragility in domain modeling, especially
in the initial stages of the project when we still had a
weak grasp on how to control the search.

High-level control languages: The control rules
described above can be thought of as an “assembly
language” for search control; and the DS1 experience
confirmed that programming in a low-level language is
painful and error prone. However, this assembly lan-
guage provides us with a strong foundation on which
to build higher level control languages which are well
founded and better capture the control knowledge of
mission operators. The declarative semantics of the do-
main model also opens up the possibility of automati-
cally understanding dependencies that point to effective
search control. The synthesized strategies can then be
compiled into the low-level control rules. Work is cur-
rently in progress to explore methods to alleviate the
burden of control search programming.

Conclusion
In this paper, we have presented an overview of the Re-
mote Agent Experiment Planning/Scheduling system,
both from theoretical and practical points of view. Re-
search and development of autonomous planning sys-
tems, capable of solving real problems, continues among
the many scientists in the field. The work we have pre-
sented here is just another step in this development,
but it is a step that has taken autonomous planning to
interplanetary space.
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COMMENT

Planning in Interplanetary Space: Theory and Practice

Troy P. LeBlanc
NASA Johnson Space Center

Houston, TX 77058
troy.p.leblanc1@jsc.nasa.gov

Introduction
Autonomous closed-loop planning/scheduling engines
will definitely replace the role of the human mission
planner for manned interplanetary space missions.  It is
likely that the roles of mission director and mission
managers will, as well, be eliminated.  This commentary
is divided into responses to the theoretical development
and practical application of the Remote Agent Experiment
Planner/Scheduler (RAX-PS) developed for NASA’s
New Millennium Deep Space One spacecraft.

Comment on Theory
RAX-PS theoretical descriptions range from integrated
planning and scheduling to planning databases to a
planning oracle.  These topics are well laid out to
establish the necessary framework for a planner/scheduler
application to reside on board the restrictive computer
architecture of an unmanned spacecraft.

Planning versus Scheduling
There is no defined difference in RAX-PS between
planning and scheduling functions.  The belief that
intermixing these methodologies is unavoidable with
complex synchronization constraints seems to be a future
growth limitation.  The ability to define a phased mission
profile through planning against an abstract resource
allocation should allow greater mission scheduling
autonomy during execution.  Put simply, mission goals
will for the foreseeable future of space flight be decided
well in advance, and the production of an abstract planned
mission profile to ensure achievable schedules should be
considered an advantage.

Planning Databases
Reading about RAX-PS’s planning databases provides
some very exciting insight into the possibilities of
autonomous scheduling.  In the commenter’s opinion, the
use of reasoning steps to map given databases for conflict
detection is very important to plan validation.  Also, the
inference that it is not necessary to resolve all flaws
injects reality into the model.

In scheduling, the counterpart to conflict detection is
conflict resolution, which requires evaluation or grading
functions to be resident and available in a more persistent

scheduling database.  Of course, grading implies reaching
the most optimized plan as an end goal; however, this
should be driven by pre-execution definition of flight
rules and a planned mission profile.

Oracles and Flight Rules
The application of flight rules to an oracle may, for the
purposes of developing and operating an autonomous
closed-loop planner/scheduler, be improper.  The oracle’s
definitions for operational preferences within the RAX-PS
search controller are equivalent to planning/scheduling
groundrules for manned space flight.  The oracle’s
operational preferences (i.e. groundrules), which should
be driven by planned mission phases, should drive
grading functions.  Theoretically, the oracle should have
all data concerning the mission profile, the
planning/scheduling groundrules, and the grading
functions to validly schedule a timeline.

Comment on Practice
The use of RAX-PS on the Deep Space One spacecraft
definitely proves the viability of the software for
unmanned space missions.   The extension of a variant of
RAX-PS to manned deep space missions brings into
question knowledge capture, data archival, and
extensibility.

Knowledge Capture
Here again, reading about capturing the domain expertise
of mission operators to drive search control through
development of a high-level language seems filled with
possibilities.  It is stated that it is plausible to define the
semantics to “automatically understand dependencies that
point to effective search controls”, so it should also be
plausible for a high-level control language to
automatically update dependencies, such as consumables,
in a planning database which change over a mission
profile.

Data Archival during Flight
Although storage memory for ground-bound computer
systems is no longer a problem, it seems RAX-PS did not
have this luxury.  Even onboard the International Space
Station (ISS), the mission planners will be limited to 1000
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automatically initiated activities in the plan for a typical
day.  However, for longer duration, deep space missions
that may encounter limited communications for data
downlink, autonomous closed-loop planners like RAX-PS
will need to archive plans for executed mission phases.
This data could also be utilized in grading the best new
plans based on previous results.

Extensibility to Manned Missions
The use of an autonomous planning/scheduling capability
onboard ISS has been discussed amongst space station
engineers many times.  The idea of allowing astronauts in
low earth orbit to schedule their own day’s work is not
ideal to mission directors and mission managers
concerned with less than perfect assembly operations.
However, mission planners believe operations will, in the
future, be more relaxed. This opens the possibility of
having a software system define the crew’s workday
without ground control intervention.

For deep space manned vehicles that would also
require assembly, RAX-PS has already shown a
fundamental solution to incrementally develop a timeline
against a model.  However, the requirements to plan
bringing new spacecraft systems on-line and then
automatically schedule the system verification and
autonomously include nominal operation of each
additional system within daily timelines only hints at the
complexity of the next generation RAX-PS.

Conclusion
The background of this commenter is manned low earth
orbit mission planning and scheduling, and the RAX-PS,
as it is designed, is eliminating that job.  The framework
of the software system definitely lends itself to future
growth in manned deep space missions.   The comment,
though, is primarily concerned with the overall use of the
planning database from oracles to operational preferences
to data capture and storage.  The commenter hopes that
the issues raised in this paper will highlight pertinent
questions to drive future development decisions of the
first manned quality RAX-PS.
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Contact Troy LeBlanc (troy.p.leblanc1@jsc.nasa.gov)
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Abstract

The Remote Agent Experiment (RAX) on the Deep
Space 1 (DS1) mission was the �rst time that an arti-
�cially intelligent agent controlled a NASA spacecraft.
One of the key components of the remote agent is an
on-board planner. Since there was no opportunity for
human intervention between plan generation and ex-
ecution, extensive testing was required to ensure that
the planner would not endanger the spacecraft by pro-
ducing an incorrect plan, or by not producing any plan.

The testing process raised many challenging issues, sev-
eral of which remain open. The planner and domain
model are complex, with billions of possible inputs and
outputs. How does one obtain adequate coverage with
a reasonable number of test cases? How does one even
measure coverage for a planner? How does one deter-
mine plan correctness?

As planning systems are �elded in mission-critical ap-
plications, it becomes increasingly important to ad-
dress these issues. We describe the major issues en-
countered while testing the Remote Agent planner, how
we addressed them, and what issues remain open.

Introduction

As planning systems are �elded in operational environ-
ments, especially mission-critical ones such as space-
craft commanding, validation of those systems becomes
increasingly important. Veri�cation and validation of
mission-critical systems is an area of much research and
practice, but little of that is applicable to planning sys-
tems.
Our experience in validating the Remote Agent plan-

ner for operations on board DS1 raised a number of key
issues, some of which we have addressed and many of
which remain open. The purpose of this paper is to
share those experiences and methods with the planning
community at large, and to highlight important areas
for future research.
At the highest level there are two ways that a plan-

ner can fail. It can fail to generate a plan (converge)
within stated time bounds, or it can generate an incor-
rect plan. We used empirical testing to detect these
kinds of failures. We ran the planner on several in-
puts and used an automated test oracle to determine

whether they satis�ed the requirements as expressed
in �rst order predicate logic. A second (trivial) oracle
checked for convergence.
The key issue in empirical testing is obtaining ade-

quate coverage (con�dence) within the available testing
resources. This requires a combination of strong test se-
lection methods that maximize the coverage for a given
number of cases, and strong automation methods that
reduce the per-test cost.
The RAX test selection strategy required 289 cases

to adequately exercise a narrow space of inputs simi-
lar to those we expected to see in operation. This was
su�cient for the RA experiment, but broader cover-
age|with correspondingly more test cases| would be
needed for operational pro�les outside of the experi-
ment scope. We developed a number of test automation
tools, but it still required six work-weeks to run and an-
alyze 289 cases. This high per-test cost was largely due
to human bottlenecks. Better test selection strategies
and more powerful automation methods are needed to
permit broader coverage for a reasonable cost. This
paper identi�es several open issues in these areas, and
suggests ways to address them.
The rest of this paper is organized as follows. We

�rst describe the RAX planner and domain model. We
then discuss the test case selection strategy and the
open test selection issues. We then discuss the test au-
tomations employed for RAX, the demands for human
involvement that limited their e�ectiveness, and sug-
gest automations and process improvements that could
mitigate these factors. We conclude with an evaluation
of the overall e�ectiveness of the Remote Agent planner
testing, and summarize the most important open issues
for planner testing in general.

RAX Planner

The Remote Agent planner (Muscettola et al. 1997) is
one of four components of the Remote Agent (Nayak
et al. 1999). The other components are the Executive
(EXEC), Mission Manager (MM), and Mode Identi�-
cation and Recon�guration (MIR).
When the Remote Agent is given a \start" command

the EXEC puts the spacecraft in a special idle state, in
which it can remain inde�nitely without harming the

 136          2nd NASA International Workshop on Planning and Scheduling for Space

First published by the authors under the same title in AIPS 2000, p. 254-263
Copyright  (c) 2000, American Association for Artificial Intelligence. Reprinted with permission from AAAI



spacecraft, and requests a plan. The request consists of
the desired plan start time and the current state of the
spacecraft. The desired start time is the current time
plus the amount of time allocated for generating a plan
(as determined by a parameter, and typically between
one and four hours).
The Mission Manager extracts goals from the mission

pro�le, which contains all the goals for the experiment
and spans several plan horizons. A special waypoint
goal marks the end of each horizon. The MM extracts
goals between the required start time and the next way-
point goal in the pro�le. These are combined with the
initial state. The MM invokes the planner with this
combined initial state and the requested plan start time.
The planner expands the initial state into a conict-

free plan using a heuristic chronological backtracking
search. During the search the planner obtains addi-
tional inputs from two on-board software modules, the
navigator (NAV) and the attitude control subsystem
(ACS). These are also referred to as \plan experts."
When the planner decides to decompose certain nav-
igation goal into subgoals, it invokes a NAV function
that returns the subgoals as a function of the goal pa-
rameters. The planner queries ACS for the duration
and legality of turn activities as a function of the turn
start time and end-points.
The fundamental plan unit is a token. These can rep-

resent goals, activities, spacecraft states, and resources.
Each token has a start and end timepoint and zero or
more arguments. The tokens exist on parallel timelines,
which describe the temporal evolution of some state or
resource, or the activities and goals related to a partic-
ular state. Some RAX timelines are attitude, camera
mode, and power. The domain model de�nes the token
types and the temporal and parameter constraints that
must hold among them.
If the planner generates a plan the EXEC executes

it. Under nominal conditions the plan is executed suc-
cessfully and the EXEC requests a new plan. This
plan starts at the end of the current plan, which is
also the start of the next waypoint in the pro�le. If
a fault occurs during execution, and the EXEC cannot
recover from it, it terminates the plan and achieves an
idle state. This removes the immediate threat of the
fault. Depending on the failure, it may only be able to
achieve a degraded idle state (e.g., the camera switch is
stuck in the o� position). It then requests a new plan
that achieves the remaining goals from the achieved idle
state. As with other requests, the required start time
is the current time plus the time allowed for planning.
Domain Model. The domain model encodes the

knowledge for commanding a subset of the DS1 mission
known as \active cruise" that consists of �ring the ion
propulsion (IPS) engine continuously for long periods,
punctuated every few days by optical navigation (op-
nav) images and communication activities.
The goals de�ned by the domain model are shown

in Table 1. The initial state consists of an initial to-
ken for each of the timelines in the model. The legal

Goal Type Arguments

waypoint hzn,expt start,expt end

navigate frequency (int), duration (int).
slack (int)

Comm none
power estimate amount (0-2500)
exec activity type, �le, int, int, bool
sep segment vector (int), level (0-15)
max thrust duration (0-inf)
image goal target (int), exposures (0-20),

exp. duration (0-15)

Table 1: Goals

start tokens for most timelines are �xed. Table 2 shows
the non-�xed timelines and the set of legal start to-
kens for each one. Finally, the domain model de�nes 11
executable activities for commanding the IPS engine
and MICAS camera, slewing (turning) the spacecraft,
and injecting simulated faults. The latter allow RAX
to demonstrate fault recovery capabilities, since actual
faults were unlikely to occur during the experiment.

Test Selection Strategy

The key test selection issue is achieving adequate cover-
age with a manageable number of cases. One selection
strategy is to analyze the domain model to identify in-
put values that would fully exercise the model according
to some coverage metric. Although the validation and
veri�cation literature is full of coverage metrics for con-
ventional systems, to our knowledge no such metrics
exist for planner domain models.
Having neither a metric nor the time to devise one,

we instead used a black-box selection approach that has
been successful in several conventional systems. The
idea is to characterize the inputs as an n-dimensional
parameter space and use orthogonal arrays to select a
manageable number of cases that exercises all pair-wise
combinations of parameter values. These tests can be
augmented as needed with selected higher-order com-
binations. Large input spaces can be tested tractably
since the number of pair-wise cases grows only logarith-
mically in the number of parameters|proportional to
(v=2) log

2
k for k parameters with v values each (Cohen

et al. 1997).
One disadvantage of this all-pairs selection strategy

is that each test case di�ers from the others and from
the nominal baseline input in several parameter values.
That often made it di�cult to determine why a test case

state timeline initial values

exec activity 0,1,2
attitude Earth, image, thrust vector
micas switch ready, o�
micas healthy true, false

Table 2: Variable Initial State Timelines
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failed, especially when the planner failed to converge.
To address this problem we created a second test set

in which each case di�ered in only one parameter value
from the nominal baseline, which was known to pro-
duce a valid plan. This \all-values" test set exercised
each parameter value at least once. If one of these cases
failed, it was obviously due to the single changed pa-
rameter, and its similarity to the baseline case made
it easier to identify the causal defect. The reduction
in analysis cost comes at the expense of additional test
cases. The all-values test set grows linearly in the num-
ber of parameter values: 1 + n(v � 1) for n parameters
with v values each.

RAX Test Selection

We now discuss how the all-pairs and all-values test
selection strategies were employed for RAX. The plan-
ner has the following inputs: a set of goals, which are
speci�ed in a mission pro�le and by the on-board navi-
gator; an initial state; a plan start time; slew durations
as provided by the ACS plan expert; and two plan-
ner parameters|a seed for the pseudo-random number
generator that selects among non-deterministic choices
in the search, and \exec latency" which controls the
minimum duration of executable activities.
Each of these inputs is speci�ed as a vector of one or

more parameter values. The goals and initial states are
speci�ed by several parameters, and the other inputs
are speci�ed by a single parameter each. Several of the
parameters, such as plan start time, have in�nite or
very large domains. It is clearly infeasible to test all
of these values, so we selected a small subset that we
expected to lie at key boundary points. This selection
was ad hoc based on the intuition of a test engineer
familiar with the domain model, or simply high, middle,
and low values in the absence of any strong intuition.
Table 3 shows the full list of parameters, the range of
values each can take, and the values tested.
Parameters 6-11 specify the initial state, Parameters

14-18 specify the IPS thrusting and MICAS imaging
goals requested by the onboard Navigator, and Param-
eter 20 speci�es the duration of spacecraft slew (turns)
activities in the plan as computed by the attitude con-
trol planning expert (APE). This Parameters 12, 13,
and 19 specify the mission pro�le input. These gener-
ate mutations of the two baseline mission pro�les that
we expected to use in operations: a 12 hour con�dence-
building pro�le that contained a single optical naviga-
tion goal and no IPS thrusting goals, and a six day
primary pro�le that contained all of the goal types in
Table 1. The mutations were designed to cover possi-
ble changes to the least stable elements of the pro�les.
Since the pro�les are �nalized prior to operations, and
we had control over their contents, focusing on muta-
tions of these pro�les seemed a reasonable strategy. As
it turned out, the pro�le had to be changed radically
at the last minute for operational reasons. We reduced
the horizon from six days to two, deleted �ve goals and
changed the parameters and absolute (but not relative)

id Parameter Values Tested Range

1 experiment start 3 integer
2 plan start 10 integer
3 pro�le 12h, 6day, 2day same
4 random seed 3 seeds integer
5 exec latency 1, 4, 10 0-10
6 micas switch o�, ready same
7 micas healthy true, false same
8 micas healthy true, false, n/a same

(prior plan)
9 attitude SEP, Image, same

Earth
10 end last thrust -2d, -1d, -6h integer
11 end last window -2d, -1d, 0 integer
12 window duration 1,2,3,4,6 hours integer
13 window start 0, 1, 2, 4 integer
14 targets/window 2, 20 0-20
15 images/target 3, 4, 5 3-5
16 image duration 1, 8, 16 1-16
17 SEP goals 6 con�gurations in�nite
18 SEP thrust level 6, 12, 14 15
19 SPE 1500,2400,2500 2500
20 slew duration 30, 120, 300, 30-

400, 600, 1200 1200

Table 3: Tested Parameters

placement of others. The goal types and overall pro�le
structure remained the same. Fortunately, no new bugs
were exposed by the new pro�les since there would have
been little time to �x them. Testing a broader range
of pro�les would have mitigated that risk. Broader test
strategies are discussed in the next section.

RAX operational requirements imposed three con-
straints among the parameter values as shown in Ta-
ble 4. The test generator considered these constraints
to avoid generating impossible cases. Constraint set one
enforces the operational requirement that plans gener-
ated from the 12 hour pro�le will never have SEP goals,
will start at the horizon start, and will have one of
the four RAX idle states as the initial state. The sec-
ond and third constraints enforce the following require-
ment. The plan start time is always one of the horizon
boundaries (horizon waypoint goals) except when the
exec requests a replan after a plan failure. In that case
the exec �rst achieves one of the four RAX idle states,
which becomes the initial state for the replan. So if
the plan start is not a horizon boundary, constraint set
two restricts the initial state parameters to the four idle
states. When the plan start is at the horizon boundary
for the six-day plan, all initial states are possible. This
situation is reected by the third constraint set.

The all-pairs and all-values test cases were generated
automatically from the parameters and constraints de-
scribed above. The constraints were satis�ed by gener-
ating one test set for each constraint set. The sizes of
the resulting test sets are shown in Table 5. An addi-
tional 22 cases exercised the planner interfaces.
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Constraint Sets (req'd values)
id Parameter 1 2 3

2 plan start 0 6= 3 days 3 days
3 pro�le 12-hr 6-day 6-day
8 micas healthy none none *

(prior plan)
9 attitude Earth Earth *
10 end prior thrust 0 0 *
11 end prior window 0 0 *
17 SEP goals null goal * *
18 SEP thrust level 0 * *

Table 4: Constraint Sets

1 2 3 Total

all-pairs 24 61 41 126
all-values 23 51 45 119

Table 5: Test Set Sizes

Test Selection Challenges

The selected tests were ultimately successful in that
the on-board planner exhibited no faults during the ex-
periment, and the tests provided the DS1 ight man-
agers with enough con�dence to approve RAX for ex-
ecution on DS1. However we still have no objective
measure of the delivered reliability. Objective metrics
are needed to evaluate new and existing test strategies.
It seems likely that there were a number of coverage
gaps, though again we have no way to measure that
objectively. This section makes some informed guesses
as to where those gaps might be and suggests some ways
of addressing them.
Value selection was ad hoc. Many parameters

had large or in�nite domains, and so only a few of those
could be tested. That selection was ad hoc, based pri-
marily on the tester's intuition. This undoubtedly left
coverage gaps. One way to close the gap is to select
values more intelligently based on a coverage metric.
The metric would partition the values into equivalence
classes that would exercise the domain model in qual-
itatively di�erent ways. This would ensure adequate
coverage while minimizing the number of values per pa-
rameter, and therefore minimizing the number of test
cases.
Broader goal coverage needed. RAX planner

testing focused on mutations of the baseline pro�le.
Bugs exercised only by other goal sets would not have
been detected. For example, transitioning from the
6 day scenario to the 2 day scenario compressed the
schedule and eliminated the slack time between activ-
ities. This led to increased backtracking which caused
new convergence failures. Exercising the full goal space
would eliminate this coverage gap. It is also necessary
for future missions, which must be con�dent that any
goal set (pro�le) they provide will produce a valid plan.
The challenge is how to provide this coverage with a
manageable number of test cases.

One possibility is to create parameters that could
specify any mission pro�le and perform all-pairs testing
on this space. This would require at least one parame-
ter for the start time, end time, and arguments for up
to k instances of each goal type. For k = 3 the RAX
model would require 140 parameters. These would re-
place parameters 12-19 of Table 3. Testing 3 values for
each parameter would require 175 cases, and 5 values
would require 337. All-values testing would require 884
and 1700 cases respectively.
This indicates that all-pairs testing of the full goal

space is feasible, and that all-values testing might be
feasible with su�cient test resources. Mission pro�les
would need to be generated automatically from the pa-
rameter values since manual generation is infeasible.
One issue is that parameter vectors specify unachiev-
able or impossible goal sets that would never occur in
practice. These cases have to be automatically identi-
�ed and eliminated to avoid the high analysis cost of
discriminating test cases that failed due to impossible
goals from those that failed due to a defect. Determin-
ing whether an arbitrary goal set is illegal is at least as
di�cult as planning, but it should be possible to detect
many classes of illegal goals with simpler algorithms
(e.g., eliminate goals that are mutually exclusive with
any one or two domain constraints).
Although all-pairs testing of this parameter space is

feasible, it is subject to the same e�ectiveness issues as
the narrower all-pairs testing. That is, there could be
coverage gaps from ad hoc value selection, and from not
testing higher-order parameter combinations. Coverage
metrics would help answer that question.
Formal Coverage Metrics Needed. Formal cov-

erage metrics are sorely needed for planner validation.
Metrics based on analyses of the domain model can in-
dicate which parameter values and goal combinations
are likely to exercise the domain model in qualitatively
di�erent ways. Formal metrics can identify coverage
gaps and inform cost-risk assessments (number of cases
vs. coverage).
Formal coverage metrics, such as code coverage, have

been developed for critical systems but to our knowl-
edge no metrics have been developed for measuring
coverage of a planner domain model. The most rele-
vant metrics are those for verifying expert system rule
bases. The idea is to backward chain through the rule
base to identify inputs that would result in qualitatively
di�erent diagnoses (e.g., (O'Keefe & O'Leary 1993)).
Planners have more complex search engines with cor-
respondingly complex mappings, and a much richer in-
put/output space. It is not immediately obvious how
to invert that mapping in a way that produces a rea-
sonable number of cases.
One possible metric would be to measure the num-

ber and strength of goal interactions exercised by the
test cases. The idea is to analyze the domain model
to determine how the goals interact, and only test goal
combinations that yield qualitatively di�erent conicts.
For example, if goals A and B used power, we would
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Task E�ort

Update/debug cases, tools 3.0
Run cases and analyzers 0.1
Review analyzer output 1.5
File bug reports 0.5
Close bugs 0.5
Total 5.6

Table 6: Test E�ort in Work Weeks by Task

test cases where power is oversubscribed by several A
goals, by several B goals, and by a combination of both
goals. The coverage could be adjusted to balance risk
against number of cases. One could limit the coverage
to interactions above a given strength threshold.
This metric would extend on prior work on detect-

ing goal interactions in planners to improve up the
planning search, such as STATIC (Etzioni 1993) and
Alpine (Knoblock 1994). These methods are designed
for STRIPS-like planning systems and would have to
be extended to deal with metric time and aggregate re-
sources, both of which are crucial for spacecraft applica-
tions. One of the authors (Smith) is currently pursuing
research in this area.

Test Automation

Automation played a key role in testing the Remote
Agent planner. It was used for generating tests, run-
ning tests, and checking test results for convergence and
plan correctness. Even so, the demand for human in-
volvement was high enough to limit the number of test
cases to just under three hundred per six week test pe-
riod, or an average of ten cases per work-day.
The biggest demand for human involvement was

updating the test cases and infrastructure following
changes to the planner inputs, such as the domain
model and mission pro�le. The next largest e�ort was
in analyzing the test results. The test e�ort by task is
shown in Table 6. This section discusses the automa-
tions that we found e�ective, the human bottlenecks,
and opportunities for further automation.

Test Automation Tools

We employed two test automation tools: a test harness,
a plan correctness oracle, and a trivial plan convergence
oracle (the case succeeds if and only if the planner cre-
ates a plan within the time limit). The test harness
converted the parameters in each test case into planner
inputs, ran the planner on them, and saved the out-
put. The full test suite could be run automatically in
about 16 hours. The plan correctness oracle (Feather &
Smith. 1999) reads a plan into an assertions database
and then veri�es that the assertions satisfy require-
ments expressed in �rst order predicate logic (FOPL).
This tool was critical since inspecting plans manually
for correctness would have been prohibitively time con-
suming and error prone.

Analysis Costs

The two analysis tasks are determining whether a test
case has failed, and why. The �rst task was performed
by the automated test oracles. Once the oracles have
identi�ed the failed test cases, the next analysis task
is to determine why they failed. For each failed test
case, the analyst determines the apparent cause of the
failure. Cases with similar causes are �led as a single
bug report.
Analyzing the test cases took eight to ten work-days

for a typical test cycle and were largely unautomated.
To determine why a plan failed to converge the analyst
looked for excessive backtracking in the search trace or
compared it to traces from similar cases that converged.
Plan correctness failures also required review, although
it was somewhat simpler (2-3 days vs. 8-10) since the
incorrect plan provided context and the oracle identi�ed
the o�ending plan elements.
Automated diagnosis could reduce these e�ort of de-

termining why the planner failed to generate a plan.
There has been some work in this area that could be
applied or extended. Howe (Howe & Cohen 1995) per-
formed statistical analyses of the planner trace to iden-
tify applications of repair operators to states that were
strongly correlated with failures. Chien (Chien 1998)
allowed the planner to generate a plan, when it was oth-
erwise unable to, by ignoring problematic constraints.
Analysts were able to diagnose the underlying problem
more quickly in the context of the resulting plan.
Analysis costs could also be reduced by only running

and analyzing tests that exercise those parts of the do-
main model that have changed since the last release.
One would need to know which parts of the domain
model each test was intended to exercise. This infor-
mation is not currently provided by the all-pairs strat-
egy, but could be provided by a coverage metric: a test
is intended to exercise whatever parts of the model it
covers. A di�erencing algorithm could then determine
what parts of the model had changed, where the \parts"
are de�ned by the coverage metric.

Impact of Model and Interface Changes

About half of the test e�ort in each cycle were the re-
sult of changes to the planner inputs and interfaces.
The test harness and test cases then had to be updated
to support the new inputs. Making these changes only
required a day or two. The bulk of the e�ort was caused
by undocumented interface changes which managed to
creep into most of the software releases. Planner in-
puts that were correct before the change could be in-
correct after it, resulting in cases that fail when they
should have succeeded or vice versa. Some of these er-
rors were obvious, and detected by dry runs with a few
test cases. Others were more subtle and not detected
until the analysis phase, at which point the cases had
to be re-run and re-analyzed after �xing the harness.
Appropriate software engineering practices can help

minimize interface changes. Automation can also help
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reduce the impact of changes when they do occur. We
present a few possibilities below. The �rst two were
used successfully for RAX.
Private Parameters. To minimize the impact from

token parameter changes, we created the notion of a
private parameter in the domain speci�cation language.
These were used when parameters were added to propa-
gate values needed by new domain constraints or heuris-
tics, the most common reason for adding new parame-
ters to the model. Private parameters do not appear in
the initial state or pro�le. Their values are set automat-
ically by propagation from other parameters. This re-
duced the number of impactful parameter changes from
30 to 10.
Special Test Interfaces. To reduce the impact of

changes to the initial state tokens and the format of the
initial state �le, both of which changed frequently, we
negotiated an alternative testing interface to the initial-
state generating function in the EXEC code. The test
harness constructed an initial state by sending appro-
priate inputs to those functions, which then created
the initial state in the correct format with the correct
tokens. The idea of negotiating stable testing inter-
faces applies to testing complex systems in general, and
should ideally be considered during the design phase.
Automated Input Legality Checks. The e�ort of

identifying unintended mission pro�le and initial state
inputs could have been greatly reduced by automat-
ically checking their legality. One could imagine au-
tomating these checks by using an abstraction of the
domain model to determine whether a set of goals are
achievable from the speci�ed initial state.

Conclusions
The main requirements for the Remote Agent planner
were to generate a plan within the time limit, and that
the plan be correct. These requirements were veri�ed
by running the planner on several input cases and auto-
matically checking the results for convergence and plan
correctness. Correctness was measured against a set of
requirements reviewed by system and subsystem engi-
neers. The cases were selected according to an \all-
pairs" selection strategy that exercised all pairs of in-
put parameter values. The selected values were at key
boundary points and extrema. They were selected in-
formally, based on the tester's knowledge of the domain
model.
The tests focused on mutations of the two baseline

mission pro�les (goal sets) we expected to use in op-
erations. This was su�cient for the experiment, but
may not scale to broader operational contexts. Formal
planner coverage metrics are sorely needed to make the
best use of available cases and objectively balance risk
(coverage) against cost.
The number of manageable cases could be increased

by reducing the demand for human involvement. Anal-
ysis costs were high because of the need to provide ini-
tial diagnoses for cases where the planner failed to gen-
erate a plan, and the need to review the plan checker's

output. Changes to the planner interfaces, including
changes to the model, also created an overhead for up-
dating and debugging the test harness. We suggested a
number of ways to mitigate these factors.
The Remote Agent was a real-world, mission-critical

planning application. Our experience in validating the
Remote Agent planner raised a number of key issues.
We addressed several of these, but many issues remain
open. As planning systems are increasingly �elded in
critical applications the importance of resolving these
issues grows as well. Hopefully the Remote Agent ex-
perience will spark new research in this important area.
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Introduction

The 2nd NASA Workshop on Planning & Scheduling for
Space asked reviewers to provide a written commentary on
submitted papers. This commentary discusses the
following paper:  Challenges and Methods in Testing the
Remote Agent Planner (the "paper"), which described the
approach used to test the software called the Remote Agent
planner (the "planner"). The Remote Agent software was
used to control the Deep Space 1 (DS1) spacecraft for two
days. The Remote Agent planner is a step towards
spacecraft autonomy where human intervention is not
required.

General Observations

Here are several general observations. First, planning and
scheduling systems are difficult to test. Second, flight
software operates in a more restricted environment than the
ground software.  Third, simpler algorithms can be added
to the Remote Agent planner for use on specific missions
to facilitate testing.

Testing Planning and Scheduling Systems

Typically, planning and scheduling systems receive
requests and planning data as inputs and generate a
schedule of activities as an output. In evaluating the output,
there is no single correct answer or result. Two or more
schedules that have different scheduled activities and
different activity start times can be deemed correct by the
user. In contrast, for a command and telemetry system,
there is only one correct bit pattern for a particular
sequence of commands, and only one correct result in
converting a raw 8-bit telemetry point to engineering units.

The person who tests the planning and scheduling
system (the "tester") has the daunting task of evaluating the
output data without knowing what the correct answer
should be. The software programmer may be able to
calculate the correct answer manually by examining the
code and analyzing the system requirements; however, the
tester does not do this except for simple cases. Even for the
software programmer, the manual calculation of the correct

answer becomes impractical for a large number of
activities on the output schedule.

The Remote Agent planner uses an automated tool to
evaluate the correctness of the output schedule. The tool
uses an assertions database and first order predicate logic
(FOPL). More information about the tool appears in other
papers by the authors. However, the planner can generate
output that appears to be correct and passes the automated
tool checking, yet the planner still contains subtle bugs.

Flight Software Environment

The flight software environment has limitations. Typically,
the flight hardware is ten or more years behind the ground
hardware in system performance. The flight software and
hardware is an embedded system that has a limited amount
of main memory and disk storage.  Most flight software
testing occurs on a special testbed rather than on the actual
spacecraft.

Intermittent problems can occur during flight system
testing. Repeatable problems are much easier to find and
debug than intermittent problems, which are difficult to
reproduce. Embedded flight software may not capture good
debugging information when an intermittent problem
occurs. Software programmers may be unable to solve
problems that occur only one time or that occur
infrequently because of an interrupt timing condition. The
"Test Harness" may not be in place when an intermittent
problem occurs. Of course, these mysterious problems are
worrisome.

The traditional approach to commanding the spacecraft
involves the use of command loads. The science user
generates a science plan that specifies a list of targets for
the instrument on the spacecraft to observe. A schedule is
produced that takes into account the time to take exposures
of the target and the time to slew (turning) from one target
to another target. A sequence of commands, called a
command load, is generated from the schedule and
uplinked to the spacecraft. The onboard computer executes
the command load, which is the plan or schedule for the
spacecraft. The Remote Agent performs these planning and
scheduling functions onboard that are traditionally done by
ground systems. It represents the trend of the migration of
ground functions to the flight software environment.
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Simpler Algorithms

The paper described the dilemma of trying to select test
cases to cover the "paths through the search space." One
possibility would be to simplify the software under test
rather than trying to test complicated software. Simpler
algorithms could be added to the Remote Agent planner.
For example, fixed activity timelines similar to the Space
Shuttle Crew Activity Plan can be used to make the testing
problem manageable. This approach is suitable only for
scheduling applications that employ pre-stored scenarios.

Mission-specific algorithms could be developed. Those
algorithms would be designed to facilitate the testing.
Perhaps inheritance could be employed to make this
approach more general.

Another possibility is to formalize the simulation
approach. NASA typically employs simulations to test
complicated systems. The formalization would be an
extension of the methods described in the said paper, such
as "Multiple Variation Test Cases" and test automation
tools.

Specific Comments

Specific comments include (1) the description of "tokens"
is not clear, (2) the relationship between the use of formal
coverage metrics and the testing of heuristics is not clear,
and (3) the testing only describes one portion of the flight
software.

The paper defines tokens as follows:  "The fundamental
execution units in the plan are tokens (activities). Tokens
also track spacecraft states and resources." However, the
names of the tokens in Tables 1 and 2 look like
attributes/properties or states, not objects/activities. The
initial state tokens in Table 2 do not appear to be
compatible with a class member initialization list approach.
The technical approach on the use of tokens may be
innovative, but it needs more explanation.

The paper advocates the need for formal coverage
metrics that measure coverage for a planner domain model.
However, the use of heuristics contributes to the testing
difficulties. Testing each heuristic individually is
straightforward. On the other hand, the interactions among
the executions of various heuristics produce a complicated
behavior that may result in the generation of an incorrect
plan. Sometimes, a heuristic-based algorithm may fail to
find a solution. In other words, if the goal is too difficult,
there may be no solution for a given situation. It is not
clear how formal coverage metrics can help in these cases.

Flight software testing is already expensive. While the
paper addresses only the testing of the planner portion of
the Remote Agent software, the testing of the other flight
software components is also challenging. For example, the
paper mentions other functions such as generating a list of
targets, calculating maneuvers, performing maneuvers,
calculating slews (turning) from one target to another
target, performing slews, taking images, and fault detection

and recovery. The cost of testing these flight software
functions is a factor.

Conclusion

The paper provides an account of the issues in testing a
complicated planning system, the approaches and
techniques that were used, the technical and conceptual
problems that occurred, and possible improvements and
research areas. The method for test case selection was
discussed, as well as the automation of some parts of the
testing process.

Testing an artificially intelligent agent requires
grappling with the solution space. The testing techniques
described in this paper may be applied to other artificial
intelligence applications.
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Abstract

Preference models determine which one of several plans
to prefer. It is important that planners use the same
preference models as rational human decision makers
because planners should make the same decisions as
their human users (as long as they are rational), other-
wise the planners are not of much use. While arti�cial
intelligence planning has made lots of progress in the
areas of representations of planning tasks and planning
methods, it has not yet paid su�cient attention to the
preference models of human decision makers. Utility
theory is a formal framework for modeling the prefer-
ences of human decision makers and making rational
decisions in high-stake decision situations. This paper
reports on �rst steps in the direction of building plan-
ners that �t the risk attitudes of human decision mak-
ers in high-stake planning domains better than current
planners, by combining descriptive methods from util-
ity theory with constructive methods from arti�cial in-
telligence planning and operations research, thus com-
bining the strengths of the two decision-making disci-
plines and extending the applicability of planners from
arti�cial intelligence.

Introduction
Arti�cial intelligence planning has developed
knowledge-based planners. These planners can have
advantages over methods from other decision-making
disciplines because they exploit more of the structure
of large-scale planning tasks. Planning methods from
arti�cial intelligence, for example, represent search
spaces implicitly (for example, with STRIPS rules)
and exploit the resulting decomposability. Arti�cial
intelligence planning has made lots of progress over
the past couple of year in the areas of representa-
tions of planning tasks as well as planning methods.
However, arti�cial intelligence planning has not yet
paid su�cient attention to the planning objectives,
which are still primitive. In deterministic domains,
planners from arti�cial intelligence have traditionally
been used with the objective to �nd any plan that
achieves the goal. To make their preference model
richer, planners then began to associate execution costs
with plans and preferred plans that achieve the goal
with minimal plan-execution cost, that is, minimal

consumption of one limited resource such as time,
energy, or money. In probabilistic domains, planners
from arti�cial intelligence usually either minimize the
average plan-execution cost or, if the goal cannot
be achieved for sure, maximize the probability of
goal achievement. However, these preference models
are often too simplistic to model the preferences of
human decision makers adequately. How to plan with
more realistic preference models, however, is a topic
that has been neglected in the literature on arti�cial
intelligence planning. It is an important topic because
the recommendations of planners should reect the
opinions of their users correctly (as long as they are
rational { we are not interested in irrational decision
making). After all, the planners make suggestions for
how to act and should make the same suggestions that
the users would have made themselves. Otherwise the
planners would not be very helpful.

Our research program therefore investigates how to
build e�cient planners that �t the preference models
of rational human decision makers better than current
planners, by combining descriptive methods fromutility
theory with constructive methods from arti�cial intelli-
gence planning and operations research, thus combining
the strengths of the two decision-making disciplines and
extending the applicability of planners from arti�cial in-
telligence. We are interested, for example, in planning
with deadlines and other resource limits as well as plan-
ning with multiple attributes, such as energy, cost, time,
probability of goal achievement, prestige, and so on. In
this paper, we report on a very �rst step in the direc-
tion of building planners with more realistic preference
models. We study how to plan in high-stake decision
situations with one resource, taking the risk-attitude of
decision makers into account. High-stake decision sit-
uations occur in domains in which huge wins or losses
of money, equipment, or even human life are possible.
Many NASA domains are high-stake domains, including
planning for autonomous space craft (Pell et al. 1997),
and many human decision makers prefer to avoid the
huge losses that are possible in these domains. We are
also interested in how the risk attitude changes the opti-
mal plan, for example, its inuence on how long to plan
before starting to act and how frequently to sense. Util-
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ity theory is a formal framework for modeling the pref-
erences of human decision makers and making rational
decisions in high-stake decision situations. It suggests
that decision makers maximize their average utility in
these domains, where the utility is a strictly monoton-
ically decreasing but often nonlinear function of the
plan-execution cost. However, it speci�es only what
optimal plans are but not how they can be obtained
e�ciently. The di�culty we need to overcome is how to
combine ideas from utility theory, arti�cial intelligence,
and operations research, which is nontrivial but allows
us to exploit the structure of planning tasks to make
planning with nonlinear utility functions e�cient. In
the past decades, arti�cial intelligence researchers have
acquired a large body of knowledge about how to plan
e�ciently with the current preference models, by uti-
lizing the structure of planning tasks. We will demon-
strate that, in some cases, these insights can be used
to plan e�ciently with nonlinear utility functions. This
promises to make planning with some nonlinear utility
functions as fast as planning with standard planners
from arti�cial intelligence or operations research and
enables one to participate in performance improvements
achieved by other researchers in the currently very ac-
tive �eld of probabilistic planning, while extending the
applicability of existing planners from arti�cial intelli-
gence or operations research. It also promises to allow
for an easy integration of risk attitudes into existing
decision-support systems, automated planning systems,
and agent architectures.

High-Stake Decision Situations
High-stake decision situations occur in domains in
which huge wins or losses are possible. In high-stake de-
cision situations, rational human decision makers usu-
ally do not minimize the average plan-execution cost or
maximize the average reward because they take risk as-
pects into account. This is why many human decision
makers buy insurance even though the insurance pre-
mium is usually much larger than the average loss from
the insurance cause. Another example is the following
simple decision situation with two alternatives, one of
which has the larger average pay-o� and the other one
of which has the smaller variance. Consider the decision
situation shown in Figure 1, where you can participate
in one and only one of the following two lotteries at no
charge. When human decision makers have to decide
whether they would like to get 4,500,000 dollars for sure
or get 10,000,000 dollars with �fty percent probability
(and nothing otherwise), many human decision makers
prefer the safe alternative although its average pay-o�
is clearly lower { they are risk-averse. (Similarly, there
are decision makers that are risk-seeking.) It is impor-
tant to realize that this is perfectly rational behavior.
Risk-averse human decision makers are willing to accept
a smaller mean of the pay-o� for a decrease in variance
because they fear for the worst case. They are trying to
avoid catastrophes, and a small variance avoids pay-o�s
that are much smaller than average. If a planner chose

the lottery with the larger average pay-o�, then many
human decision makers would be extremely unhappy
half of the time. It is therefore important that planners
reect the opinions of rational human decision makers
correctly. After all, planners make suggestions for how
to act and should make the same suggestions that the
human decision makers would have made themselves.
(This is the reason why investment advisors ask for your
risk attitude before making investment recommenda-
tions.) However, arti�cial intelligence planning has not
studied how to determine plans that correctly reect
the risk attitudes of rational human decision makers in
high-stake decision situations.

Preference Models

Bernoulli and Von Neumann/Morgerstern's utility the-
ory (von Neumann & Morgenstern 1947; Bernoulli
1738) has investigated how rational human decision
makers make decisions in high-stake decision situations.
Utility theory can explain why they often do not mini-
mize the average plan-execution cost. It suggests that it
is rational to choose plans with maximal average util-
ity, where the utility u(c) is a strictly monotonically
decreasing function of the plan-execution cost c. Hu-
man decision makers sometimes deviate from utility
theory because, di�erent from other theories, such as
Kahneman and Tversky's prospect theory (Kahneman
& Tversky 1979), utility theory does not model human
inadequacies in decision making and thus is not able
to explain all empirical �ndings about human decision
making. This is not a problem for planners since plan-
ners are supposed to follow a theory of rational (nor-
mative) rather than empirical decision making. Max-
imizing average utility and minimizing average plan-
execution cost result in the same decisions if either the
domains are deterministic or the utility functions are
linear. These assumptions, however, are often not sat-
is�ed. For example, nonlinear utility functions are nec-
essary to account for the risk-averse attitudes of many
rational human decision makers for the lottery exam-
ple above. The lottery example can be explained as
follows: Assume that a human decision maker is risk-
averse and has the concave exponential utility function
shown in Figure 2 and no other assets. This human
decision maker associates utility (here: pleasure) 0.00
with a wealth of 0 dollars, utility 0.74 with a wealth
of 4,500,000 dollars, and utility 0.95 with a wealth of
10,000,000 dollars. Then, the (average) utility of get-
ting 4,500,000 dollars for sure is 0.74, whereas the aver-
age utility of getting 10,000,000 dollars with �fty per-
cent probability is only 0.475. In this case, the safe
alternative maximizes the average utility for this hu-
man decision maker, which explains why this human
decision maker chooses the safe alternative over the one
with the larger average pay-o�. Other human decision
makers can have other utility functions and thus arrive
at di�erent conclusions.
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Choices Probability Pay-O� Average Pay-O� Utility Average Utility
Choice 1 50 percent 10,000,000 dollars 5,000,000 dollars 0.95 0.475

50 percent 0 dollars 0.00
Choice 2 100 percent 4,500,000 dollars 4,500,000 dollars 0.74 0.740

Figure 1: Decision Situation
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Figure 2: Risk-Averse Utility Function

Exponential Utility Functions

Utility theory speci�es only what optimal plans are
but not how they can be obtained e�ciently, that is,
other than by enumerating every trajectory of every
possible plan. Operations research and control the-
ory use dynamic programming methods to �nd plans
with maximal average utility (Marcus et al. 1997;
Whittle 1990) but these methods often do not exploit
the structure of planning tasks completely. Arti�cial
intelligence planning has developed knowledge-based
planners that plan e�ciently in large domains but usu-
ally either minimize the average plan-execution cost or,
if the goal cannot be achieved for sure, maximize the
probability of goal achievement. It might seem that
one could simply replace the resource consumptions
with their utilities and then continue to use planners
from arti�cial intelligence. This is certainly true for
one-stage decision situations, such as the lottery ex-
ample. However, di�erent from the lottery example,
real-world planning tasks are usually much more com-
plex and consequently involve much more complex de-
cisions. For these multi-stage decision situations, it is
impossible to simply replace the resource consumptions
with their utilities and then continue to use planners
from arti�cial intelligence. Assume, for example, that
one incurs cost c1 at the �rst time step and cost c2
at the second time step, which is also the last one.
Then, one obtains u(c1) + u(c2) if one replaces the
costs with their utilities whereas the correct utility is
u(c1 + c2). Instead, our multiplicative planning-task
transformation (Koenig 1998) makes use of existing
planners from arti�cial intelligence or operations re-

search by transforming planning tasks with exponential
utility functions to planning tasks that planners from
arti�cial intelligence or operations research can solve.
The transformed planning tasks can be solved by �nd-
ing plans with maximal probability of goal achievement
or minimal average plan-execution cost. The multi-
plicative planning-task transformation is such that op-
timal plans for the transformed planning task are also
optimal for the original one, and good (\satis�cing")
plans for the transformed planning task are also satis-
�cing for the original one. The multiplicative planning-
task transformation works for convex and concave ex-
ponential utility functions. Convex exponential util-
ity functions are of the form u(c) = �c for param-
eter  > 1, and concave exponential utility functions
are of the form u(c) = ��c for parameter  with
0 <  < 1. These utility functions are expressive
because the parameter  can be used to trade-o� be-
tween minimizing the best-case, average, and worst-
case plan-execution cost (Watson & Buede 1987). As
 approaches in�nity, the human decision makers be-
come more risk-seeking and thus more interested in
plans with small best-case plan-execution cost (under
appropriate assumptions) (Koenig & Simmons 1994;
Koenig 1998). As  approaches one, the human de-
cision makers become more interested in plans with
small average plan-execution cost. Finally, as  ap-
proaches zero, the human decision makers become more
risk-averse and thus more interested in plans with small
worst-case plan-execution cost. Thus, exponential util-
ity functions can express a continuum of risk attitudes,
that includes the utility functions of the lottery example
above.

Crisis Management

Our current application area is managing environmen-
tal crisis situations such as oil spills (Desimone &
Agosta 1994). The goal of planning in the oil-spill do-
main is to determine how to manage resources such as
human teams, vessels, and equipment to contain and
clean up oil spills, taking into account all costs incurred
until they are cleaned up completely (expressed in dol-
lars). Crisis management domains have several ad-
vantages: E�cient planning methods for them directly
bene�t the public. They are important high-stake plan-
ning domain for which many human decision makers
are very risk averse since they prefer to avoid the huge
losses that are possible in these domains. Thus, plan-
ners that minimize the average cost do not use the same
preference model as many human decision makers and
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arrive at di�erent courses of action.

Sensor Planning

An interesting observation in crisis management sit-
uations is that human decision makers gather large
amounts of information even if it is costly and thus
might not be part of a plan that minimizes the aver-
age plan-execution cost. In the oil-spill domain, sens-
ing operations include, for example, sending out heli-
copters to gather information about how oil spills drift.
The knowledge that an oil spill drifts towards a nature
preserve can be used to concentrate resources in the
surrounding sea sectors to prevent the oil from reach-
ing sensitive shores. Thus, sensing provides informa-
tion that can reduce the plan-execution cost but comes
at a cost itself. Sensor planning for risk-averse or risk-
seeking human decision makers involves the same trade-
o� as the lottery example above (Koenig & Liu 1999).
For example, adding more sensing operations than is
necessary to minimize the average plan-execution cost
increases the mean of the plan-execution cost (because
sensing is expensive) but also reduces its variance (be-
cause the information obtained can be used to avoid
catastrophes). Consequently, we speculate that risk-
averse human decision makers add more sensing oper-
ations than is necessary to minimize the average plan-
execution cost.

Case Study

In the following, we provide a case study of how the
risk attitude inuences the sensing frequency to test
our hypothesis that risk-averse human decision makers
add more sensing operations than is necessary to mini-
mize the average plan-execution cost. At the same time
we demonstrate that our multiplicative planning-task
transformation can be combined with existing planners
that minimize the average plan-execution cost to yield
planners that maximize average utility for exponential
utility functions. We apply the multiplicative planning-
task transformation to the sensor planner by Hansen
(Hansen 1997) that combines methods from operations
research (namely, policy iteration (Howard 1964)) and
arti�cial intelligence (namely, the A* search method
(Nilsson 1971)) to �nd plans with minimal average plan-
execution cost. In (Koenig & Liu 1999), we present
the resulting sensor planner and a proof of its correct-
ness. Here, we present the results of a case study where
we apply the resulting sensor planner to simple arti�-
cial robot-navigation tasks with actuator uncertainty.
Notice that these robot-navigation tasks are not high-
stake planning domains and we do not suggest to apply
our planning methods to planetary rover navigation in
the way we do it here. We use robot-navigation tasks
merely as a test bed because they are much simpler to
solve than the oil-spill domain (and we can thus run
a much larger number of experiments in a reasonable
amount of time), they allow us to visualize the planning
results much more easily, and they have been studied

before in the context of sensor planning (Hansen 1997)
and can therefore be considered good test problems
for new sensor planners. We consider robot-navigation
tasks with the following properties. The robot has to
navigate from a given start location to a given goal lo-
cation in a known environment. Since motion is noisy,
the robot can deviate from the nominal path but it can
always opt to sense its current location. Sensing pro-
vides certainty about its current location but is costly
(for example, consumes energy). We assume that there
is a �nite set of locations L. The robot knows that
it starts at location lstart 2 L and its task is to navi-
gate to location lgoal 2 L and be sure that it stops at
exactly that location. There is a �nite set M of move-
ment actions, all of which can be executed at all loca-
tions. Motion uncertainty is modeled with conditional
probability distributions. Executing movement action
m 2 M results with cost c(l;m) > 0 and probability
p(l0jl;m) in location l0. The robot receives no feedback
as to what its new location is (which makes the simpli-
fying assumption that the cost of the executed actions
cannot be observed directly) but there is one sensing
action o that can be executed at all locations. Execut-
ing it incurs cost c(l; o) > 0 and reports the current
location of the robot with certainty. We assume that it
is possible to reach every location from every other lo-
cation. Figure 3 (left) shows the gridworld that we use
in our experiments, where the locations are squares.
The start location is C1 and the goal location is J1.
The robot can always sense its current location (O) or
move north (N), east (E), south (S), or west (W) to
an adjacent square. If the robot attempts to move in
a certain direction (say, move east in square C1), then
it either moves as intended (C2, with probability 0.6)
or strays o� by one square to the left (B2, with prob-
ability 0.2) or right (D2, with probability 0.2) due to
actuator noise and not facing precisely in the right di-
rection. The robot does not move when it bumps into
the border of the gridworld. The movement cost ranges
from 1.0 to 10.0. It is low for roads (white) and high for
muddy terrain (darker colors). The sensing cost is al-
ways 0.2. Notice that even very risk-averse robots have
to trade o� between minimizing the worst-case and av-
erage plan-execution cost in our example domain even
if they want to approximate plans with minimal worst-
case plan-execution cost, a planning objective popular
in robotics (Lozano-Perez, Mason, & Taylor 1984). It is
not possible to minimize the worst-case plan-execution
cost directly in our example domain because all plans
cycle with some probability and thus have a worst-case
plan-execution cost that is in�nite. So, even very risk-
averse robots need less risk-averse planning objectives
than minimizing the worst-case plan-execution cost but
more risk-averse planning objectives than minimizing
the average plan-execution cost. Maximizing the av-
erage utility for an exponential utility function with 
su�ciently close to zero provides such a planning ob-
jective.

Figure 4 shows that the sensing frequency (that is,
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Figure 4: Sensing Frequency

the percentage of sensing actions among all executed ac-
tions) increases as the robots become more risk-averse
and  decreases. This is also illustrated in Figure 7,
that shows optimal sensor plans for two di�erent values
of .1 The sensor plans are depicted as gridworlds, each
location of which is annotated with an action sequence.
These action sequences are used as follows: After the

1There are some exceptions to this trend, for example,
in the vicinity of the goal. This can be explained as follows:
Risk-seeking robots assume that short action sequences that
have a chance of reaching the goal location will indeed reach
it. Thus, they execute these action sequences followed by a
sensing action to con�rm that they have reached the goal
location. For example, for  = 1:40, the action sequence
of location I2 is SO. The robot hopes that it will drift to
the goal location J1 as it moves south, although this is less
likely than moving to location J2. More risk-averse robots
are more cautious and execute longer action sequences. For
example, for  = 1:86, the action sequence of location I2 is
SWO, which reaches the goal location with higher proba-
bility than the action sequence SO. This phenomenon and
similar phenomena contribute to the small local minima in
the graph of Figure 4.
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Figure 5: Mean of Plan-Execution Cost

robots have executed a sensing action, they look up
the action sequence that corresponds to the sensed lo-
cation, execute it, and repeat the process, until they
sense that they are at the goal location. For exam-
ple, for  = 0:86, the action sequence of location B2 is
SEO. Consequently, after the robot has sensed that it
is at location B2, it �rst moves south (S), then moves
east (E), and �nally senses again (O). Locations whose
action sequences are not used for getting from the start
location (C1) to the goal location (J1) are left blank.
Figure 3 (right) shows how often the robots visit each
grid square during two million runs for three di�erent
values of . Darker colors indicate a larger number of
visits. Thus, more risk-averse robots are more likely to
stay on the road and close to the nominal path, which
is possible due to the increased sensing frequency. That
more risk-averse robots are more likely to stay on the
road can be explained as follows: By staying on the
road, the robots are likely able to avoid the large cost
necessary for getting out of the mud, which risk-averse
robots consider to be important. On the other hand,
smaller sensing frequencies and attempts to cut the cor-
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Figure 6: Mean with Con�dence Interval

ners decrease the probability that the robots stay on
the road but also decrease the plan-execution cost in
the best case, which risk-seeking robots consider to be
important. (In fact, the action sequences of the start
location get longer and longer as the robots become
more risk-seeking until the action sequences are able to
move the robots to the goal location in the best case.)
This explanation suggests that there is a mean-variance
trade-o� in our example domain. As pointed out ear-
lier, mean-variance trade-o�s are often used as crude
but easy-to-understand explanations for trade-o�s be-
tween minimizing the worst-case, average, and best-case
plan-execution cost. For example, the graph in Fig-
ure 5 shows the mean of the plan-execution cost, and
the di�erence of the upper and lower graphs in Figure 6
corresponds to four times the standard deviation of the
plan-execution cost. The mean of the plan-execution
cost increases but the variance decreases as the robots
become more risk-averse and  decreases from one to
zero. The variance decreases because more risk-averse
robots stay on the road and close to the nominal path.
The mean-variance trade-o� can be explained as fol-
lows: More risk-averse robots are willing to accept a
larger mean of the plan-execution cost for a decrease
in variance because they fear for the worst case. A
small variance avoids a plan-execution cost that is much
larger than average. Figure 6 illustrates this using the
upper bound of a 95-percent-con�dence interval (that
is, mean plus twice the standard deviation) as an ap-
proximation of the worst-case plan-execution cost. The
upper bound indeed decreases as the robots become
more risk-averse since the decrease of the variance out-
weighs the increase of the mean. On the other hand,
more risk-seeking robots are willing to accept a larger
mean for an increase in variance since a larger vari-
ance promises a chance to realize a plan-execution cost
that is much smaller than the average plan-execution
cost. Figure 5 illustrates this using the lower bound of

a 95-percent-con�dence interval (that is, mean minus
twice the standard deviation) as an approximation of
the best-case plan-execution cost. The lower bound in-
deed decreases as the robots become more risk-seeking
since the increase of the variance outweighs the increase
of the mean. Our sensor planner is not only as easy to
implement as the sensor planner that it extends but
also almost as e�cient. For  = 0:86, our sensor plan-
ner expands 2,071 nodes and needs an average of 4.6
milliseconds per node expansion on a Sun Ultra 1 run-
ning Solaris 7. The original sensor planner by Hansen,
that our sensor planner extends, corresponds to the case
where  approaches one. It needs 2,815 node expansions
and 2.0 milliseconds per node expansion. For  = 1:40,
our sensor planner needs 5,808 node expansions and
5.2 milliseconds per node expansion. The number of
node expansions depends on the sensing frequency. It
increases as the sensing frequency of the optimal plans
decreases. Our sensor planner has a slight run-time dis-
advantage per node expansion compared to the original
sensor planner by Hansen because it has to calculate
exponentials and logarithms, and its heuristic search
method cannot calculate the heuristic values quite as
e�ciently as the original sensor planner.

Conclusions
We described a method for creating planners that �nd
plans with maximal average utility for a given exponen-
tial utility function and thus reect the risk attitude of
rational human decision makers in high-stake decision
situations better than plans with minimal average plan-
execution cost. Our method generalizes the planning
objectives of traditional planners from arti�cial intel-
ligence that often either minimize the average or the
worst-case plan-execution cost or, if the goal cannot
be achieved for sure, maximize the probability of goal
achievement. Our multiplicative planning-task trans-
formation is a fast simple context-insensitive represen-
tation change that can be performed locally on various
representations of planning tasks, including rule-based
(STRIPS) representations (Fikes & Nilsson 1971) and
(totally and partially observable) Markov decision pro-
cess models. We applied the multiplicative planning-
task transformation to an existing sensor planner. The
resulting sensor planner is not only as easy to imple-
ment as the sensor planner that it extends but also
almost as e�cient. Our case study showed that the
frequency of sensing depends on the trade-o� between
minimizing the best-case, average, and worst-case plan-
execution cost. More risk-averse human decision mak-
ers tend to sense more frequently, and planners should
reect this behavior accurately. This research is ben-
e�cial for NASA since many NASA domains are high-
stake planning domains. Human decisions makers often
want to make high-level decisions themselves, for ex-
ample, because they have background knowledge that
planners do not have (or because of political consid-
erations). However, there are disadvantages to having
humans in the loop for every decision on-board of un-
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 = 0:86 (risk-averse robots)

1 2 3 4 5 6 7 8 9 10 11

A SSSO

B SEO SEO SEO SEO SEO SO SSO

C EO EO EO EO EO EO SEO SO SO WSO

D NEO NEO NEO EEEO EEO EO ESO SO WSO WWSO

E EESO ESO SO WSO

F SSSO SO WSO

G SSO SO WSO

H SSWO SSWO SO WSO WO

I SO SWO SWO SWO SWO SWO SWO SWO WO WWO WWWO

J goal WO WO WO WO WO WO WO

K NO NWO NWO NWO NWO NWO NWO NWO NWWO

L NNWO NNWO

 = 1:40 (risk-seeking robots)
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Figure 7: Optimal Sensor Plans

manned spacecraft, including decisions in crisis situa-
tions, due to the resulting time delay. In these cases, it
is important that arti�cial intelligence planners make
similar decisions as rational human decision makers.
The research that we reported here is only a �rst step in
the direction of planning with more realistic preference
models by combining descriptive methods from utility
theory with constructive methods from arti�cial intelli-
gence planning. Future work includes how to plan with
multiple attributes (such as time, energy, and money)
and resource limits.
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Abstract 
 

Thoughtfully structured, analytical processes should 
be part of NASA’s (or any goal-oriented 
organization’s) decision-making.  Decision theory, 
incorporating schemes for characterizing outcomes, 
uncertainties, and risk preferences, can be very useful 
in structuring and formalizing logical decisions.  This 
commentary on Koenig’s High-Stake Planning paper 
gives one interpretation of the proper and possible use 
of structured decision techniques in NASA -- at least 
in those situations where unquantifiable political 
factors do not overwhelm the process. 

Perhaps the most interesting issue raised by 
Koenig’s paper is whether it is useful to characterize 
or model NASA’s (or any decision-maker’s) risk 
preference in terms of “optimism” and “pessimism.”  
Decision-makers can feel lucky or unlucky, but can 
such feelings be modeled in any useful or meaningful 
way?  And more importantly, should unfounded 
hunches or irrational mood swings be included in 
business and technical decisions?  The answer to both 
questions is very likely “no.” 

 
Expected Value Decisions 

 
Decision analysts generally agree that choices can be 
made on the basis of the likelihood of an event (or 
“outcome”) and the impact of that event.  The foundation 
of most decision theory is that decision options can be 
compared and prioritized by calculating their “expected 
values,” which are the products of their respective impact 
magnitudes (benefit or disbenefit of the outcome) and the 
probabilities of their occurrence.  The reason for using 
“expected value” is that it works.  It maximizes gain and 
minimizes loss over the long term.  It is proven every day 
in casino operations, as well as in businesses that 
routinely make decisions with profit and loss potential. 

In real-life situations, “expected values” 
frequently must be adjusted to reflect the perceived 
(subjective) worth of an outcome or the subjective 
perception of the probability of its occurrence.  This kind 
of subjectivity is widely evident, as most decision makers 
shy away from extreme losses, or they disproportionately 

favor relatively sure, albeit smaller, gains.  For example, a 
typical decision-maker might select an assured $200K 
over a 50/50 chance at $1M.  Clearly, this approach 
would not produce the greatest profit over many 
opportunities, but this risk-averse behavior is real.  It 
simply says that for this decision-maker, a sure $200K has 
a utility that is equal to or greater than an uncertain $1M.  
It does not say that any assured dollar amount is worth 
more than a 50/50 chance at a million.  On the contrary, 
many people are willing to give up a dollar in hand for a 
five-million-to-one chance at $1M in the lottery. 

It is important to notice that risk aversion is not 
dependent so much on the probability of winning or 
losing, as it is on the dollar amounts involved.  NASA 
might be willing to spend thousands or millions of dollars 
on a very speculative research activity with uncertain 
payoffs, but just as a casino owner would not risk his 
entire business on a fair bet, NASA wants to avoid 
ventures that might jeopardize its credibility and future.  
This risk-averse nature (which could equally well be 
called loss-averse nature) can be reasonably well 
characterized for different decision-makers or 
organizations.  It is frequently displayed as a plot of the 
subjective utility of dollar amounts against actual dollar 
values, as shown below. 

 
 

Here in this typical risk-averse utility plot, it can 
be seen that a million dollars does not have twice the 
utility of half-a-million dollars.  The utility curve for a 
casino owner might be straight.  For a person in desperate 
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need of a million dollars, the curve would probably be 
bent the other way. 
 

NASA and Risk  
 

At the height of the space race, in the 1960s and 1970s, a 
national inferiority complex produced money and a 
willingness to take chances.  Early US attempts to launch 
satellites resulted in frequent failure.  The prevailing 
attitude was that the value of success far outweighed the 
risk and embarrassment of failure.  In decision analysis 
parlance, the expected value of a successful launch was 
larger than the expected value of losing the nation’s 
technical preeminence to a foreign power. 

Today, with relatively tight budgets, ambitious 
projects, and decreased public anxiety about national 
pride, low cost and low risk are priorities.  NASA’s 
current risk-averse, safety first approach is largely derived 
from the high degree of success it enjoyed decades ago.  
NASA, through skill, luck, and ample funding, 
demonstrated impressive space exploration capabilities.  
The public and congress came to expect nothing less than 
excellence from the world’s greatest space agency.  In 
that context, failure became not only a contradiction to 
past performance, it was a tremendous embarrassment to 
NASA and the nation.  The loss of the first teacher in 
space was devastating.  The failure of space systems to do 
what previous space systems did seems inexcusable.  The 
resulting risk averseness is partly an acknowledgement 
that failure has a cost that exceeds the missed science or 
money spent. 

As the danger of world domination by other 
nations has, at least temporarily, subsided, decision 
criteria are more complex. At the same time NASA has 
proclaimed its willingness and ability to “do more for 
less,” it is advocating the chancier “faster, better, 
cheaper” philosophy.  In addition, lower budgets and 
ambitious programs have forced some risky international 
partnerships (e.g., the International Space Station).  With 
no little green men on Mars and no jungles under the 
clouds of Venus, science goals are more esoteric. These 
crosscutting philosophical overtones make NASA 
decisions more political, opaque, obscure, and difficult to 
model.  While there is some doubt that NASA decision 
processes can be modeled at all, the bigger question may 
be whether they should be modeled, or whether, perhaps, 
NASA decisions should be more methodical and 
structured, with decision criteria openly discussed.  
 

The Rover Operations Example 
 
The application of decision analysis to Koenig’s rover is 
difficult due to a number of unspecified parameters (as of 
this writing).  First, there is no specific value or utility 
metric for the rover completing its mission in a given 
time, or for partially completing its mission.  Second, 
there is no limit indicated on the availability of the 

resource (presumably electrical energy, although it could 
be computer memory, or something else).  Third, there are 
no penalties identified for getting lost or stuck in the mud.  
Nonetheless, we can apply decision theory by assuming 
that minimizing the resource consumption is the ultimate 
goal. 

In this example, resource consumption is 
proportional to the distance the rover moves. Each 
location-sensing event provides useful navigation 
information, but it also consumes some of the resource.  
Less frequent sensing saves resource, but can cause the 
rover to stray off the path, resulting in more resource 
consumption.  For each sensing frequency there is a 
statistical spread of possible resource consumption levels.  
The following figure shows typical consumption curves 
for two sensing frequencies.   

It is easy enough to calculate the expected value 
(or “expected resource consumption”) for each sensing 
frequency.  On the average, high sensing frequency wins, 
but in a small percentage of trial runs, low sensing 
frequency produces even lower consumption levels. 

Koenig’s thesis is that real (e.g., NASA) decision 
makers are swayed by the variance in the resource 
consumption curve.  He postulates that an “optimistic” 
decision-maker may well select the option with the 
highest average and highest possible resource 
consumption, because it also offers a small chance of a 
very low consumption.  Conversely, he suggests a 
“pessimistic” decision-maker will select the sensing 
frequency with the lowest variance and lowest maximum 
consumption, in order to avoid the option with highest 
possible consumption.  Realistically, without some 
inordinate advantage for low resource consumption, there 
is no rationale for selecting anything but the sensing 
frequency with the lowest expected resource 
consumption. 

In a situation where the resource is limited, and 
the chance of failure has important negative 
consequences, the choice becomes clearer.  The figure 
below arbitrarily sets a hypothetical upper limit on 
resource consumption.  Clearly, the decision-maker who 
selects the lower sensing frequency is not only foolishly 
“optimistic,” but accepting a significant probability of 
failure. 
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Indeed, some decision-makers feel lucky on 

some days, and unlucky on others.  However, attempting 
to formally characterize and apply this behavior can be 
counterproductive.  First of all, overlaying intuition and 
hunches on carefully constructed expected value 
calculations will ultimately result in reduced overall 
productivity.   Second, attempting to overlay best 
estimates of risk and uncertainty with additional 
subjective feelings about the risk is really an admission 
that the original probability estimates are not believed and 
need to be adjusted.  Placing subjective feelings on the 
best estimates of probabilities is a bit like a craps player 
saying, “I know the odds of throwing a seven are truly six 
out of 36, but today I feel like they are 18 out of 36.”  
Baring fortune telling and supernatural intervention, 
decision making should be based on rational, honest, 
thorough assessments of probability and utility.  The only 
time intuition is useful is when it stimulates further 
assessments of the variables used to calculate the 
expected values. 
 

Problems with Decision Analysis in NASA 
 
In most high-level, high-stake NASA decisions, political 
considerations (congressional support, fear of failure, 
threatened credibility, degraded image, budget threats, 
etc.) are dominant.  Attempts to formalize and systematize 
the process would require that decision-makers identify 
and quantify personal and organization agendas that they 
prefer to keep hidden.  For decisions that fall below 
political visibility, decision analysis can be fruitfully 
applied.  However, there are still barriers that seem to 
escape the insight of the naïve decision analyst. 

One reason that traditional decision analysis and 
utility theory cannot be applied directly to NASA 
decisions is purely mechanical.  The curves plotted to 
show the nonlinear utility of money as a function of its 
numerical value do not readily translate to assessments of 
the worth of mission successes and failures. Imagine, for 
example, NASA mission option A, which collects 4 GB 
of data and is judged to have twice the value of mission 
option B, which collects 3 GB of data. There is an 
obvious nonlinearity of utility to data quantity, since the 
last gigabyte adds a disproportionately large amount of 
utility.  The important underlying message is that the 

assessed mission option values already include the 
nonlinear subjectivity. If option valuation is done 
correctly and credibly, further adjustments are neither 
appropriate nor technically meaningful.   

Extending the above example, assume that the 
probability of success for option A is 50%, and that for 
option B is 100%.  The two options thus have identical 
expected values (i.e., 50% x 2.0 = 1.0 = 100% x 1.0).  
Adhering to decision analysis theory and practice, NASA 
should see the options as equivalent. Suppose, however, 
that a decision-maker refused to pick option A unless it 
had at least a 75% probability of success.  The “expected 
value” decision method has either failed or needs some 
adjustment.   

A likely explanation for the decision-maker’s 
seemingly irrational behavior is that there are other 
factors not formally unaccounted for.  These might 
include the negative impacts of mission failure.  Formal 
decision analysis is of little value if important 
considerations are missing. If there are significant 
potential financial, science, personal or political losses, 
they must be incorporated, along with their respective 
probabilities of occurrence. The same is true for political 
or other payoffs that might come with option selection 
(e.g., money to a contractor in an important congressional 
district) or mission success (e.g., the favorable publicity 
of an elder astronaut hero in space). 

Another possible reason for the decision-maker’s 
inexplicable attitude is a subtle variation of the previously 
discussed problem. It may be that he/she has 
misrepresented the relative utility of the two options.  
Perhaps option A actually has a subjective value (or 
utility) of 1.25 or 1.33, or 1.5 (not 2.0) times that of 
option B.  If that is the case, it would be silly to attempt 
plotting some new set of perceived values of the mission 
options against the original perceived subjective values.  
Piling subjectivity upon subjectivity is just an admission 
that the original subjective values were incorrect and not 
the ones that the decision-maker wants to use.  The 
solution is to correct the 2.0 valuation or relative utility. 

Another misused concept was addressed earlier.  
It is the notion that somehow risk preference is about the 
subjective reassessment of probabilities of outcomes.  
This line of thinking is to the effect that choices are based 
on the subjective assessment of the probabilities of 
success and failure.  A decision-maker, it may be 
postulated, will avoid situations where the probability of 
winning is low or the probability of losing is high.  
However, lotteries and high-value business and personal 
decisions clearly show that risk averseness is determined 
more by the magnitude of gain and loss than by their 
associated likelihoods.  Plotting utility curves of the 
subjective interpretation of probability against rational 
estimates of probability will not produce useful 
predictions of risk preference behavior.  A different curve 
would have to be plotted for each and every relevant 
value of gain and loss. 
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Conclusion 
 
Koenig’s rover operations example is basically a 
straightforward exercise in engineering performance 
comparison. Since there is no apparent limit to the 
resource, and no penalty for its use, there is no reason to 
select any option other than the one that provides the 
lowest expected total consumption.  The systematic 
construction and incorporation of intuition or feelings of 
luck would provide no advantage, and would most likely 
result in less than maximum productivity. 

The characterization of risk preference and risk-
aversion as “optimism” and “pessimism” may be useful in 
predicting the irrational behavior of decision makers, but 
there is no useful purpose in incorporating irrational 
predilections where the goal is to maximize gain and 
minimize loss.  It is understandable that a decision-maker 
would be risk averse, but that trait can and should be 
reflected through the full and honest assessment of option 
probabilities and possible outcomes (both positive and 
negative) and the application of decision analysis 
methods. 
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Abstract

This paper focuses on multiple learning agents in crew
task scheduling problems and explores their capabili-
ties of responsiveness, conict resolution, and collab-
oration in interactions between autonomous schedul-
ing systems and human operators. A careful inves-
tigation of these capabilities has revealed the follow-
ing implications: (1) multiple learning agents provide
responsiveness that enables them to quickly modify
their schedules in cases of unexpected anomalies; (2)
when human operators change the conditions of jobs in
the schedule, conicts are smoothly resolved through
interactions among agents; (3) human operators can
collaborate with agents by introducing preliminary or
rough schedules into autonomous scheduling systems.

Keywords: multiple learning agents, crew tasks
scheduling, responsiveness, conict resolution, collab-
oration

Introduction
Recently, the importance of autonomy is recognized
among mission technologists and scientists to address
unpredictable and complex situations in space. Based
on this understanding, several autonomous systems
such as Hubble Telescope (Muscettola 93) have been
successfully implemented in actual missions. This kind
of system contributes to closed-loop control situations
where experiments or other work can be completed
without human operations. However, many systems
still require human support especially those in schedul-
ing domains. For example, an appropriate decision re-
garding a schedule change is needed when the system
meets unexpected situations. In such a case, the rela-
tionship between autonomous scheduling systems and
human operators is important for overcoming trouble.
However, how can we implement appropriate au-

tonomous systems for the above case? We do not have
a good answer to this question. To address this is-
sue, we start by focusing on multiple learning agents
in autonomous scheduling systems and explore their
possibility through an evaluation of the following three
capabilities: (1) responsiveness, (2) conict resolution,
and (3) collaboration, all of which are important as-
pects in an interaction between autonomous schedul-
ing systems and human operators. In particular, the

�Paper submitted to the 2nd NASA International
Workshop on Planning and Scheduling for Space

�rst capability is required in the case of anomalies to
quickly provide new acceptable schedules and mini-
mize the time loss. The second capability is needed
to smoothly modify schedules according to mission
changes or other schedule change requirements. Fi-
nally, the third capability is required to undertake the
partially completed work of human operators and help
them to reduce their burdens.
This paper is organized as follows. The next section

describes a multiagent model, and then shows the crew
task schedule on a space shuttle or station. Simulations
and discussions are made in the following sections. Fi-
nally, our conclusions are given in the last section.

Organizational-Learning Oriented
Classi�er System

An Organizational-learning oriented Classi�er System
(OCS) (Takadama 99a) is one of the multiagent mod-
els that introduces the concept of organizational learn-
ing (OL) (Argyris 78; Cohen 95) studied in organiza-
tion and management science.�1 Since OCS is based
on Learning Classi�er Systems (LCSs) (Goldberg 89),
OCS has similar mechanisms to those of LCSs, but
the big di�erence�2 between OCS and LCSs is that (1)
OCS has a multiagent learning architecture, and (2)
OCS addresses the division of work in multiple agents,
both of which are di�cult in conventional approaches.

Agents

OCS is composed of many LCSs as shown in Fig. 1.
In OCS, agents (jobs in this paper) are implemented
by their own LCSs which are extended to introduce
four kinds of learning mechanisms reinterpreted from
OL.�1 In order to solve problems that cannot be solved
at an individual level, agents divide given problems
by acquiring their own appropriate functions through
interaction among agents. According to this approach,
the aim of the agents is de�ned as �nding appropriate
functions. Since these functions are acquired through
the change in each agent's rule sets and through the
change in the strength �3 of rules, a function is de�ned
as a rule set in OCS.

�1A detailed introduction or reinterpretation of the con-
cepts of OL is discussed in (Takadama 99a).

�2A detailed di�erence is described in (Takadama 99b).
�3Strength is de�ned as the worth or weight of rules.
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Architecture
As shown in Fig. 1, each agent in OCS has the same
architecture that includes the following components.

Agent 1

if-then rule 1

Working Memory

EnvironmentSub-environmentSub-environment

Organizational
Knowledge

Individual
Knowledge

Reinforcement
Learning

Rule Generation
Rule Exchange

State Action

Organizational
Knowledge Reuse

EffectorDetector

Agent 2

Working Memory

Organizational
Knowledge

Individual
Knowledge

Reinforcement
Learning

Rule Generation
Rule Exchange

State Action

Sub-environment

Agent n

Working Memory

Organizational
Knowledge

Individual
Knowledge

Reinforcement
Learning

Rule Generation
Rule Exchange

State Action

EffectorDetector EffectorDetector

Organizational
Knowledge Reuse

Organizational
Knowledge Reuse

if-then rule 2

if-then rule i

if-then rule 1
if-then rule 2

if-then rule j

if-then rule 1
if-then rule 2

if-then rule k

Figure 1: OCS architecture

< Problem Solver >
� Detector and E�ector translate a part of an en-
vironment state into the internal state of an agent
and derive actions based on the internal state (Rus-
sell 95), respectively.

< Memory >

� Organizational knowledge memory stores a set
comprising each agent's rule set as organizational
knowledge. In OCS, this knowledge is shared by
all agents. Furthermore, organizational knowledge
represents knowledge on the division of work because
each agent's rule set derives the role of each agent.

� Individual knowledge memory stores a rule set
(a set of if-then rules including a strength factor) as
individual knowledge. In OCS, agents independently
store di�erent rules.

� Working memory stores the recognition results of
sub-environmental states and also stores the internal
state of an action of �red rules.

< Mechanisms >
� Reinforcement learning, rule generation,
rule exchange, and organizational knowledge
reuse mechanisms are reinterpreted from the four
kinds of learning in OL �4.

Learning in OCS
(1) Reinforcement learning mechanism: In
OCS, the reinforcement learning (RL) mechanism en-
ables agents to acquire their own appropriate actions
required to solve given problems. In particular, RL
supports the learning of the appropriate order of �red
rules by changing the strength of the rules. Speci�-
cally, OCS employs a pro�t sharing method (Grefen-
stette 88) that reinforces a sequence of all rules when
agents complete given tasks.

�4Details are described in (Takadama 99a).

(2) Rule generation mechanism: The rule gener-
ation mechanism in OCS creates new rules when none
of the stored rules matches the current environmen-
tal state. In particular, when the number of rules is
MAX RULE (the maximum number of rules), the rule
with the lowest strength is removed and a new rule
is generated. In the process of rule generation, the
condition (if) part of a rule is created to reect the
current situation, the action (then) part is determined
at random, and the strength value of the rule is set to
the initial value.

(3) Rule exchange mechanism: In OCS, agents
exchange rules with other agents at a particular time
interval (RULE EXCHANGE STEP

�5) in order to acquire
e�ective rules that cannot be acquired by agents them-
selves. In this mechanism, a particular number ((the
number of rules)�GENERATION GAP

�6) of rules with low
strength values are replaced by rules with high strength
values between two arbitrary agents. However, rules
that have a higher strength value than a particular
value (BORDER ST) are not replaced to avoid unnec-
essary operations that increase communication costs.
The strength value of replaced rules are reset to their
initial values.

(4) Organizational knowledge reuse mechanism:
Finally, agents in OCS store a set comprising each
agent's rule set (individual knowledge) as knowledge
on the division of work when they most e�ectively
solve given problems,�7 and agents reuse this knowl-
edge when they solve other problems. For example,
when n agents most e�ectively solve problems, a set
comprising each agent's rule set is stored as fRS (1),
RS (2), � � �, RS (n)g, where RS(x) is the rule set for
the x-th agent. In OCS, this set is called organizational
knowledge�8 and is updated through problem solving.

Supplemental setup

In addition to the above mechanisms, a particular
number (FIRST RULE) of rules in each agent is gen-
erated at random in advance, and the strength values
of all rules are set to the same initial value.

Crew Task Scheduling

Problem Description

The crew task scheduling of a space shuttle or station
is a job-shop scheduling problem where many jobs for

�5This step is de�ned later.
�6The ratio of operated rules.
�7Although it is di�cult to generally de�ne e�ciency,

agents, for example, recognize that they solve a given prob-
lem most e�ectively by measuring a \good solution" or a
\small computational cost."

�8Note that agents cannot use both individual and orga-
nizational knowledge at the same time because the latter
knowledge can be utilized by all agents as learned rules.
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the crews must be scheduled under hard resource con-
straints. The goal of this problem is to �nd feasible
schedules that minimize the total schedule execution
(TSE) time of all jobs. We selected this domain be-
cause (1) this problem can be considered as a multia-
gent problem when one job is assumed to be one agent,
and (2) a systemization of this problem is required to
support schedulers at ground stations. In this task,
there are several missions composed of jobs, and these
jobs should be assigned while satisfying the following
constraints to accomplish the missions.

1. Power of space shuttle or station: Each job
requires a particular power (from 0% to 100%) in
the experiments, but the summation of the power of
all jobs at any time must not exceed 100%.

2. Link to the ground station: Some jobs require a
link to the ground station, but only one job at a time
can use it. Due to the orbit of the spacecraft, none
of the jobs can use the link during certain times.

3. Machine A: Some jobs need to use machine A in
the experiments, but only one at a time job can use
it. Some examples of machines are computers, voice
recorders, and so on.

4. Machine B: This is the same constraint as that for
machine A.

5. Execution order of jobs: In a mission unit, jobs
have an execution order, but some jobs in a mission
may be only partially ordered, which means that
some jobs may have the same order.�9 In comparison
with jobs, there is no order/priority among missions,
and thus jobs in a certain mission are scheduled with
jobs in other missions considering their respective
execution orders.

6. Crew assignment types: The crew is divided into
the following two types: Mission Specialist (MS) and
Payload Specialist (PS). The former is mainly in
charge of experiments, and the latter supports ex-
periments!%In a unit of a job, one of the following
crew assignment types is set: (a) Anybody, (b) PS
only (but the concrete crew is not speci�ed), (c) One
speci�ed PS with somebody, (d) One speci�ed MS
with somebody, and (e) Combination of PS and MS
(but the concrete crews are not speci�ed). These
crew assignments are based on actual space shuttle
missions.

In addition to the above six constraints, \the length"
and \the required number of crew members" for each
job are also decided beforehand.

Problem Setting

In the task, each job is designed as an agent in OCS,
and each job learns to acquire an appropriate sequence

�9The order described here is most simple one. Other
representations are required to handle partially order in
general.

of actions that minimizes the TSE time. Speci�cally,
jobs can only observe local situations in the range of
the length of their jobs�10 except for the TSE time cal-
culated from a location of an agent that is set at the
latest time in the schedule.�11 Based on this local ob-
servation, the rules of each job are designed to only
consider local information including jobs' own primi-
tive actions. Thus, only related (neighbor) agents can
recognize the change made by another agent.
In a concrete problem-solving approch, all jobs are

initially placed at random without considering overlaps
or the six constraints described in the previous sec-
tion. Due to this random placement, a schedule is not
feasible at this time. After this initial placement, the
jobs start to perform some primitive actions in order to
reduce overlapping areas or to satisfy the constraints
while minimizing the TSE time. When the value of
the TSE time converges with a feasible schedule, all
jobs evaluate their own sequences of actions according
to the value of the TSE time. Then, the jobs restart
from the initial placement to acquire more appropriate
sequences of actions that �nd shorter times. In this
cycle, one step is counted when all jobs perform one
primitive action, and one iteration is counted when
jobs restart from the initial placement.

Evaluation Criteria

The following two indexes are evaluated in the task,
and the performance is de�ned as a criterion which
considers the two indexes.

� Solution = TSE time

� Computational cost =
P

n

i=1
step (i)

The �rst index (solution) evaluates the execution
time of a feasible schedule, and the second index (com-
putational cost) calculates the accumulated steps. Es-
pecially in the latter equation, \step (i)" and \n", re-
spectively, indicate the steps counted in i iterations
and the number of iterations when the converged TSE
time shows the same value in particular iterations.

Simulation

Experimental Design

A simulation investigates the abilities of multiple learn-
ing agents in the following three cases. All cases are
tested with crew task schedules that involve 10 jobs in
�ve missions.

� Case 1: Responsiveness
This case addresses an anomaly situation where one
crew member cannot perform experiments for a cer-
tain duration due to illness, and investigates the re-
sult after this anomaly using a comparison between

�10Examples of the local informations include information
of an overlap, a power, a link, and so on.
�11The TSE time as global information is updated syn-
chronously every after all agents perform one primitive ac-
tion such as movements that satisfy power constraints.
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the performance from the �rst placement of agents
(jobs) and that from the current placement. When
starting from the �rst placement, all agents are
placed at their initial locations and then move their
locations by considering the parts of the anomaly.
When starting from the current placement, on the
other hand, all agents move their locations from
the current schedule that satis�es all constraints ex-
cept for the parts of the anomaly. Speci�cally, only
agents that do not satisfy constraints start by chang-
ing their locations in the schedule, and then other
agents move their locations when their constraints
are violated. In anomaly cases like that described
above, new acceptable schedules must be obtained
as quickly as possible. Therefore, both agents from
the �rst and current placements utilize learned rules
that are acquired before such situations in order to
minimize the time loss.

� Case 2: Conict resolution
This case addresses a conict situation caused by
the change in the job's execution order from lower to
higher, and investigates the result after such conict
using a comparison between the performance from
the �rst placement of agents and that from the cur-
rent placement. Since solutions may become worse
due to rules that do not consider the conict situa-
tions, agents from the �rst placement do not utilize
learned rules while those from the current placement
utilize learned rules acquired before the conict sit-
uations.

� Case 3: Collaboration
This case addresses a collaboration situation where
human operators (the authors in this paper) intro-
duce preliminary or rough schedules into agents, and
investigates the result after such collaboration using
a comparison between the performance of not us-
ing learned rules and that of using rules. Since a
start placement is decided according to preliminary
or rough schedules, both performance are calculated
from the current placement of agents. Furthermore,
agents have no learned rules in this case, and thus
agents learn rules without collaboration and utilize
them in the case of using learned rules.

In the above three cases, the learning mechanisms in
agents process every iteration, which means the time
when the TSE time converges. These mechanisms are
turned o� when the converged TSE time shows the
same value in the particular iterations. Note that the
TSE time is guaranteed to converge because in the end
all agents are unable to �nd locations where the TSE
time becomes small without overlapping as agents are
placed at early times in the schedule.
Furthermore, in the case of not using the learned

rules, agents start with randomly generated rules set
and apply the learning procedure. In the case of using
the learned rules, on the other hand, agents utilize the
learned rules and apply the learning procedure. Note
that the learned rules in the above three cases are not

utilized on the same problem in the true sense but are
utilized on a similar problem. The reasons for this are
summarized as follows: (1) in the anomaly or conict
situations, the structure of the problem changes when
an anomaly or a conict occurs because the learned
rules generated before anomaly or conict situations
do not consider such situations; (2) in the collabora-
tion situation, on the other hand, the type of problem
without collaboration is di�erent from that with col-
laboration because the learned rules without consider-
ing collaboration do not always cover the situations of
the collaboration.
Finally, since the learned rules are implemented by

a set comprising each agent's rule set which includes
only local information, these rules are assumed to be
the organizational knowledge described in the section
on OCS. In particular, considering the fact that orga-
nizational knowledge represents knowledge on the divi-
sion of work, the learned rules can be applied to similar
or other problems like those in this simulation.

Experimental Setup

Variables in OCS are set as follows: FIRST RULE (the
number of initial rules) is 25, MAX RULE (the max-
imum number of rules) is 50, RULE EXCHANGE STEP

(the interval steps for rule exchange operations) is 10,
GENERATION GAP (the percentage of operated rules) is
10%, and BORDER ST (the lowest strength of the rule
not for removal) is �50:0 �12.

Experimental Results

Fig. 2 shows the solution (the TSE time) and the com-
putational cost (the accumulated steps) in the crew
task scheduling problem. In detail, Figs. 2 (a), (b)
and (c) show the results of responsiveness, conict res-
olution, and collaboration, respectively. In this �gure,
the left axis and the white box indicate the average of
the \solution", and the right axis and the black box
indicate the average of the \computational cost". Fur-
thermore, all results are averaged from �ve di�erent
random seeds. The results suggest that (1) none of the
solutions in the three �gures change drastically even
whether the agents start from the �rst or current place-
ment or whether the agents utilize the learned rules
or not; (2) all computational costs, on the contrary,
become small when the agents start from the current
location or utilize the learned rules in comparison with
the computational costs of others.

Discussion

(1) Why Multiple Agents?

Figs. 2 (a) and (b) show that the computational costs
become small while the solution is kept at the same
level when the agents start from the current placement
after anomaly or conict situations. This is because

�12Note that the tendency in results does not drastically
change according to the parameter setting.
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Figure 2: Solutions and computational costs

multiagent systems have the potential to be robust in
dynamical environment changes caused by anomalies
or conicts. Speci�cally, multiple agents tend to ex-
plore a solution space according to independent deci-
sions among agents, and this exploration contributes to
a weakening or absorbance of an inuence from anoma-
lies or conicts. This means that the multiagent en-
vironment frequently changes due to changes made by
other agents, and thus agents simply address anomaly
or conict situations by considering them as one kind of
environmental change. However, solutions never con-
verge just by exploring a solution space. Therefore,
agents in OCS decide their actions according to the lo-
cal information as a main activity, but manage to con-
verge by sharing only one global information (i.e., the
TSE time).�13 Based on this implementation, agents
explore a solution space until the TSE time converges.
Thus, the solution level is maintained even if the agents
start from the current placement, and this start con-
tributes to a reduction in the computational costs by
preventing from large modi�cations like those from the
�rst placement.
Furthermore, agents in OCS have no way of know-

ing what the other agents are doing due to a multia-

�13Other scheduling metrics that involve global calcula-
tions can be also handled by OCS like in the TSE time.

gent approach. This seems that agents may not satisfy
their constraints. However, agents �nd their appropri-
ate places that satisfy their constraints, by checking
whether their constraints are satis�ed or not through
local information.

(2) Why Learning Agents?

Figs. 2 (b) and (c) show that the computational costs
become small while the solution is kept at the same
level when the agents utilize the learned rules. This
is because the learned rules acquired before conicts
or acquired without considering collaborations work as
factors of both reactiveness and deliberation. In detail,
the if-then part in the rules links input conditions and
output actions, and thus it works as a kind of reactive
planning (Agre 87) that works as a factor of reactive-
ness. The strength part in the rules, on the other hand,
creates a chain among rules by changing the worth of
rules,�14 and thus it works as a kind of classical plan-
ning (McDermott 78) that works as a factor of deliber-
ation. From these factors, it is quite important for the
agents to acquire both indispensable if-then combina-
tions and an appropriate rule chain in order to reduce
the computational costs while keeping the solution at
the same level.

(3) E�ectiveness of Multiple Learning
Agents

From the above discussions, we arrive at the con-
clusion that both multiple and learning are impor-
tant aspects for agents to e�ectively address (a) re-
sponsiveness, (b) conict resolution, and (c) collabo-
ration, all of which are done through an interaction
between autonomous scheduling systems and human
operators. Although this result does not cover all prac-
tical cases, our previous research have found that mul-
tiple learning agents in OCS is also e�ective in other
domains and large scale problems (Takadama 99a;
Takadama 99b). Here, this section speci�es the ad-
vantage of multiple learning agents in more detail by
investigating the relationships among the (a), (b), and
(c) cases as shown in Fig. 3.

� Applicable range of multiple learning agents:
Cases (a), (b) and (c) compare di�erent areas, re-
spectively. For example, the responsiveness case
compares the result from the �rst placement with
that from the current placement, while the collab-
oration case compares the result of not using the
learned rules with that of using the rules. These dif-
ferent focuses indicate the wide applicable range of
multiple learning agents. In particular, unexpected
situations often break predetermined schedules in
space domains, and thus a wide applicable range has
the potential to cope with such situations.

�14A rule with a high strength value is included in a rule
chain, while a rule with a low strength value is excluded in
the chain.
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� Another axes of reactiveness and delibera-
tion: As described in the previous section, both
reactiveness and deliberation are key factors to ad-
dress in the cases (a), (b) and (c). However, this axis
of reactiveness and deliberation is considered only
from the viewpoint of the learning aspect. Here, we
add another two axes of reactiveness and delibera-
tion as follows: (1) a decision whether the agents
start their locations from the current or the �rst
placement, and (2) a decision whether the agents
utilize the learned rules or not. These are because
the agents from the current placement or the agents
utilizing the learned rules contribute to �nding fea-
sible schedules quickly, while the agents from the
�rst placement or the agents without utilizing the
learned rules contribute to �nding better schedules
by exploring a wide range of search space. From this
discussion, the three axes of reactiveness and delib-
eration are embedded in multiple learning agents.
Considering the fact that these axes are tradeo� re-
lationships and that they a�ect by each other, it
is generally di�cult to implement appropriate sys-
tems due to a lot of unpredictable factors. However,
the results in this simulation suggests that agents
staring from the current placement with the learned
rules are robust in such tradeo�s.

(4) Possibility of Multiple Learning Agents
The above advantage of multiple learning agent ap-
proaches contributes not only to scheduling domains
but also to multiple satellites or multiple space robots
to address more complex and di�cult tasks. In these
cases, each satellite or robot is assumed as one agent.
Furthermore, cooperation among many schedules can
be implemented by assuming one schedule as one
agent. This kind of cooperation is quite important in
an international space station where a lot of schedules
are performed asynchronously.
As another possibility, multiple learning agents have

the potential to provide e�ective heuristic knowledge
by investigating the trace of agent's movement when
good schedules are found with small computational
costs. An example of heuristic knowledge shows that
jobs which require a long time must be placed �rst.
Note that this kind of heuristic knowledge cannot be
found from a global viewpoint but from a local one.
This means that we must investigate what kind of rules
each agent learn. As a result, the acquisition of heuris-

tic knowledge provides the operators with explanations
of the system's behavior.

Conclusion
This paper focused on multiple learning agents in crew
task scheduling problems and explored their capabili-
ties of responsiveness, conict resolution, and collabo-
ration in interactions between autonomous scheduling
systems and human operators. The main results are
summarized as follows: (1) multiple learning agents
provide responsiveness that enables them to quickly
modify their schedules in cases of unexpected anoma-
lies; (2) when human operators change the conditions
of jobs in the schedule, conicts are smoothly resolved
through interactions among agents; (3) human opera-
tors can collaborate with agents by introducing prelim-
inary or rough schedules into autonomous scheduling
systems.
Future research will include a further investigation of

\understandability" for human operators. A compar-
ison with benchmarks or conventional methods that
involve the scheduling theory (Brucker 95) must be
made. Furthermore, an evaluation in realistic scenar-
ios is also needed in future work.

References
P.E. Agre and D. Chapman (1987). \Pengi: A implemen-
tation of a Theory of Activity," The 6th National Confer-
ence on Arti�cial Intelligence (AAAI'87), pp. 268{272.

C. Argyris and D.A. Sch�on (1978). Organizational Learn-
ing, Addison-Wesley.

P. Brucker (1995). Scheduling Algorithm, Springer-Verlag.

M.D. Cohen and L.S. Sproull (1995). Organizational
Learning, SAGE Publications.

D.E. Goldberg (1989). Genetic Algorithms in Search, Op-
timization, and Machine Learning, Addison-Wesley.

J.J. Grefenstette (1988). \Credit Assignment in Rule Dis-
covery Systems Based on Genetic Algorithms," Machine
Learning, Vol. 3. pp. 225{245.

D. McDermott (1978). \Planning and Action," Cognitive
Science, Vol. 2, pp. 71{110.

N. Muscettola and S.F. Smith (1993). \Constraint-
Directed Integration of Scheduling and Planning for
Space-Based Observatory Management", The 7th Annual
Space Operations, Applications and Research Symposium
(SOAR-93).

S.J. Russell and P. Norving (1995). Arti�cial Intelligence:
A Modern Approach, Prentice-Hall International.

K. Takadama et al. (1999a). \Making Organizational
Learning Operational: Implications from Learning Classi-
�er System," Computational and Mathematical Organiza-
tion Theory (CMOT), Kluwer Academic Publishers, Vol.
5, No. 3, pp. 229{252.

K. Takadama et al. (1999b). \Can Multiagents Learn in
Organization? � Analyzing Organizational-Learning Ori-
ented Classi�er System �", The 16th International Joint
Conference on Arti�cial Intelligence (IJCAI'99) Work-
shop on Agents Learning About, From and With other
Agents.

160          2nd NASA International Workshop on Planning and Scheduling for Space



Commentary on
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Pittsburgh, PA 15213
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The paper by Takadama, Nakasuka and Shimohara
presents an architecture where multiple agents collaborate
in solving scheduling problems. The agents learn
scheduling rules and loosely collaborate by exchanging
local information and (at times) learned rules. Experiments
in the paper demonstrate that the learned rule sets help in
solving similar problems, especially when changes occur,
such as reordering of tasks or anomalies in the
environment.

Scheduling is a difficult problem. Human schedulers need
all the help they can get from automated systems. While
early research focused on knowledge-intensive approaches
[2, 4], researchers have obtained surprisingly good results
with simpler, more local methods. In particular, the
approach of starting with an infeasible (often random) plan
and iteratively making changes in it using simple decisions
has proven to be quite efficient and produces remarkably
good results [5, 6, 8, 10]. Work in scheduling has a long
history of applying other stochastic search methods to the
scheduling problem, such as Genetic Algorithms (GA) [3,
9], simulated annealing [10] and randomization and
restarting [1, 7], all with good success.

It is within this context that I view the current work. The
process described in the paper of randomly generating rules
and exchanging rules between agents strikes me as similar
to a GA-type approach. The distinctions, though, are
several. Foremost, in most GA-type approaches to
scheduling, the individuals in a population are complete
schedules. In this architecture, each agent (individual) is a
single job. Thus, the agents must exchange sufficient
information to enable them to avoid inconsistent schedules.
Apparently, the authors limit this information to 1) the
latest time of all jobs (which provides an upper bound on
the total length of the schedule) and 2) overlaps with other
jobs, in terms of requests for power, communication links,
machines and crew.

Another distinction is how rules are created. As in GA, at
set points, agents exchange their low-scoring rules with
other agents and/or randomly generate new rules.
However, in the architecture described in the Takadama
paper, agents use reinforcement learning to learn rules that
help decide how to schedule the jobs, given the available
information from other agents and overall task constraints
(such as ordering constraints).

It is surprising to me that this architecture performs as well
as it does (although it would have been nice to see
comparisons with other iterative-repair type scheduling
algorithms). In particular, since agents have no way of
knowing what the other agents may be doing, it would
seem that this architecture could lead to thrashing. For
instance, if two jobs over-subscribe for a given resource, it
seems that there is nothing to prevent the two agents from
changing their allocations in a way that happens to still be
inconsistent. With more global information (or more
synchronization between agents) this would not happen. 

Similarly, it is not clear how the communication
requirements between agents affect the efficiency of the
scheduling task. In approaches where each agent is a
complete schedule, the agents can solve their problems
independently; Here, they must communicate. If there is a
lot of potential for resource contention among tasks, there
will be a lot of communication amongst agents. It would
seem that at some point this communication would
outweigh the multi-agent advantages of the approach. In
such cases, a more reasonable decomposition might be to
have each agent be a separate resource, and have each
resource agent responsible for managing its own schedule
by trading tasks with other resource agents.

Finally, it is not clear how this approach could handle other
scheduling metrics, such as minimizing overall resource
utilization, since that would involve global calculations. It
would seem that, in such situations, either all the agents
would need to collect, and process, this information, or else
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one would need a separate agent that is responsible for
maintaining the global state of the system.

The learning aspects of the paper seem strong. In particular,
the combination of randomization (generation and exchange
of rules) and task-directed learning of rules (using
reinforcement learning) is intriguing. This seems to combine
the best of genetic-mutation type approaches and more
knowledge-based approaches. I think this is a generally
useful technique, and could probably be fruitfully applied to
other GA-type approaches. I would really like to see more
rigorous experiments comparing this hybrid learning
approach with the individual methods alone. My intuition
says that the hybrid approach will show distinct advantages,
but this really needs to be demonstrated.

In summary, I am intrigued by this approach. However, it
must be viewed in the context of a very large body of work
in scheduling that uses stochastic search and GA-type
approaches. In particular, the current approach needs to be
evaluated in realistic scenarios and must be compared to
benchmarks. While I have doubts about the ability of the
“one agent per job” approach to scale and perform well in
more complex problems, I think that the hybrid learning
approach could prove to be quite useful. I look forward to
more detailed and rigorous studies by the authors.
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Abstract

Autonomous planetary rovers must operate under tight
constraints over such resources as operation time,
power, storage capacity, and communication band-
width. To maximize scienti�c return, the rover is given
multiple methods in which to accomplish each step of
a plan. The di�erent alternatives o�er a tradeo� be-
tween resource consumption and the quality of the out-
come. We show how to choose the best way to execute a
task based on the availability of resources, the progress
made with the task so far, and the remaining work-
load. Each task is controlled by a precompiled policy
that factors the e�ect of the remaining plan using the
notion of an opportunity cost.

Introduction

This paper is concerned with the design of a reactive
meta-level controller that can optimize the operation
of autonomous planetary rovers. Such rovers operate
under tight resource constraints such as power, storage
capacity, and communication bandwidth (Bresina et al.
1999; Washington et al. 1999). The time available to
carry out experiments is limited as is the overall lifespan
of the rover. The amount of power that is available
(between recharges) is limited and must be carefully
managed. Storage capacity to be used for raw data and
processed data before transmission to a control center
is also limited. Some of the resources are renewable:
batteries could be recharged and storage space could
be freed once the data is transmitted. Our focus in this
paper is on optimal management of multiple resources
between periods in which they can be renewed. The
solution takes into account the high level of uncertainty
regarding the consumption of resources by the rover's
activities. For example, there is uncertainty about the
amount of power and time required to bring the rover
to a certain location, and there is uncertainty about the
amount of storage that will be needed for a sequence of
compressed images.
The combination of scarce resources and a high level

of uncertainty present a complex meta-level control
problem. The question is how to decide quickly during
execution time which tasks should be executed and how
to revise these decisions based on the actual progress be-
ing made, the availability of resources, and the remain-

ing workload. Our approach to this problem is based
on mapping each primitive activity (such as navigation,
taking pictures, conducting experiments, or on-board
data analysis) into a progressive processing task struc-
ture that speci�es alternative ways to accomplish each
aspect of the activity. For example, Figure 1 illustrates
a possible task structure for taking a picture of a cer-
tain object. First the object must be located. Then, the
rover may approach the object (either getting within an
acceptable distance or an optimal distance for picture
taking) and aim the camera. The picture can be taken
at any one of several resolutions and then compressed at
di�erent levels of compression. The choices made along
the execution of the task will a�ect the level of resource
consumption as well as the quality of the outcome.
Progressive processing task structures make it possi-

ble for a system to trade o� between resource consump-
tion and quality of result (Mouaddib 1993; Mouad-
dib and Zilberstein 1997; 1998). The framework de-
scribed in this paper is based on a similar approach we
have developed for dynamic composition of information
retrieval techniques (Zilberstein and Mouaddib 1999).
The control of autonomous planetary rovers, however,
has several di�erent characteristics. First, we have mul-
tiple resources to monitor rather than one (time is the
only resource monitored in previous work). Second, the
reward structure depends on the ability to maximize
scienti�c return with limited resources, but minimizing
resource consumption in itself is not an explicit goal
(minimizing response time is an explicit goal in the in-
formation retrieval application). Finally, unlike the in-
formation retrieval application, the set of tasks to be
performed over a given time period is relatively sta-
ble (in previous work we considered a dynamic set of
tasks with frequent updates). The speci�c character-
istics of the rover control problem raise several funda-
mental challenges.

1. Handling multiple resources rather than execution
time only.

2. Handling the dependency of quality and resource con-
sumption on the intermediate quality or state.

3. Handling a exible task structure in which some levels
include several alternatives or optional steps.

4. Selecting the \best" set of methods in a dynamic en-
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Figure 1: Illustration of a progressive processing task
for taking a picture of an object

vironment taking into account the progress already
made, the availability of resources, and the entire
plan.

There are a number of complementary research ef-
forts designed to develop planning and execution archi-
tectures for spacecraft systems (Blackmon et al. 1999;
Bresina et al. 1999; Estlin et al. 1999; Muscettola et
al. 1998) and, more generally, for real-time autonomous
systems (Bonasso et al. 1996; Musliner et al. 1993).
The work described in this paper is designed to com-
plement these e�orts by developing a reactive approach
to managing multiple resources under a high level of
uncertainty.

The ability to dynamically adjust computational ef-
fort based on the availability of computational resources
has been studied extensively by the AI community
since the mid 1980's. These e�orts have led to the
development of a variety of techniques such as any-
time algorithms (Dean and Boddy 1988; Zilberstein
and Russell 1996), design-to-time (Gravey and Lesser
1993), exible computation (Horvitz 1988), imprecise
computation (Liu et al. 1991), and progressive reason-
ing (Mouaddib 1993; Mouaddib and Zilberstein 1997).
This work extends this exibility to task structures that
include both computational actions and physical ac-
tions. Section 2 gives a formal de�nition of the problem.
We then solve the problem in two steps. In Section 3, we
develop an optimal solution for a single task, ignoring
the fact that additional tasks are waiting for execution.
Section 4 shows how to handle multiple tasks by factor-
ing the e�ect of the remaining plan using the notion of
an opportunity cost. In section 5 we address some open
problems and current work that examines the e�ective-
ness this approach. We conclude with a summary and
brief discussion of related work.

The control problem

This section de�nes an enhanced form of progressive
processing task structures and the corresponding meta-
level control problem. Each plan assigned to a rover is
mapped into a set of task structures de�ned as follows.

De�nition 1 A plan, P, is composed of a set of ac-
tivities, a set of ordering constraints among activities,
and an initial resource allocation r0.

The overall plan is generated o�-line at the control
center by a mixed-initiative planning process that is be-
yond the scope of this paper. We focus on the reactive,
on-board scheduling process only. Resources are repre-
sented as vectors of discrete units measuring the avail-
ability of each resource. We assume initially that the
plan is totally ordered and discuss the generalization of
the technique to partially-ordered plans in Section 5.
The rover can perform a certain number of (param-

eterized) activities each of which has a prede�ned task
structure associated with it. For simplicity of the dis-
cussion, we avoid the extra identi�er indicating the type
of activity when we consider the control of a single ac-
tivity. Each activity is associated with a progressive
processing unit.

De�nition 2 A progressive processing
unit (PRU) is composed of a sequence of processing
levels, (l1; l2; : : : ; lL).

De�nition 3 Each processing level, li, is composed of
a set of pi alternative modules, fm1

i ;m
2
i ; : : : ;m

pi
i g.

Each module can perform the logical function of level
li, but it has di�erent computational characteristics de-
�ned below.

De�nition 4 The module descriptor,

P
j
i ((q

0;�r)jq), of module m
j
i is the probability distri-

bution of output quality and resource consumption for
a given input quality.

The module descriptor speci�es the probability that
module m

j
i consumes �r resources (a discrete vector

specifying the number of units of each resource used by
the module) and produces a result of quality q0 when the
quality of the previously executed module is q. Mod-
ule descriptors are similar to conditional performance
pro�les of anytime algorithms (Zilberstein and Russell
1996).
When the system completes a task, it receives a re-

ward that depends on the quality of the output.

De�nition 5 Each PRU has a reward function,
U(q), that measures the immediate reward for perform-
ing the activity with overall quality q.

Rewards are cumulative over di�erent activities.
Given a plan P , a library of task structures that spec-

ify a PRU for each activity in the plan, the module
descriptors of all the components of these PRUs, and
corresponding reward functions for each activity, we de-
�ne the following control problem.
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De�nition 6 The reactive control problem is the
problem of selecting a set of alternative modules so as
to maximize the expected utility over a complete plan.

The meta-level control is \reactive" in the sense that
we assume that the module selection mechanism is very
fast, largely based on o�-line analysis of the problem.

Optimal control of a single activity

We begin with the problem of meta-level control of a
single progressive processing unit corresponding to a
single activity. This problem can be formulated as a
Markov decision process (MDP) with states represent-
ing the current state of the activity. The state includes
the current level of the PRU, the quality produced so
far, and the remaining resources. The rewards are de-
�ned by the utility of the solution. The possible actions
are to execute one of the modules of the next processing
level. The transition model is de�ned by the descriptor
of the module selected for execution.
Note that in certain situation it might be bene�cial to

skip the execution of a particular level or the complete
activity. To allow that, we introduce a dummy module
in each level that consumes no resources and produces
zero quality. This guarantees that at least one module
is executable in each level regardless of the availability
of resources.
The rest of this section gives a formal de�nition of the

MDP and the reactive controller produced by solving it.

State transition model

The execution of a single progressive processing unit,
u, can be seen as an MDP with a �nite set of states
S = f[li; q; r]jli 2 ug where 0 � i � L indicates the last
executed level, 0 � q � 1 is the quality produced by the
last executed module, and r is the remaining resources.
When the system is in state [li; q; r], one module of

the i-th level has been executed. (The �rst level is i = 1;
i = 0 is used to indicate the fact that no level has been
executed.) The states [lL; 0; r] represent termination
with no useful result and remaining resources r.
The initial state of the MDP is [l0; 0; r], where r is

the available resources. The initial state indicates that
the system is ready to start executing a module of the
�rst level of the PRU. The terminal states are all the
states of the form [lL; q; r]. In every nonterminal state,

the possible actions are Ej
i+1 (execute the j-th module

of the next level). To complete the transition model,
the probabilistic outcome of these actions are de�ned
as follows.
To simplify the presentation, we assume that a mod-

ule is executable only when there are enough resources
to cover the worst-case possibility. This can be relaxed
if we add a mechanism to abort an action once it re-
quires more resources than available.

The outcome of each action, Ej
i+1, is probabilistic.

Resource consumption and quality uncertainties de�ne
the new state.

Pr([li+1; q
0; r ��r] j [li; q; r];E

j
i+1) = P

j
i+1((q

0;�r)jq)
(1)

Rewards and the value function

Rewards are determined by the given reward function
applied to the �nal outcome. Note that no rewards
are associated with intermediate results, although this
could be easily incorporated into this model.
We now de�ne a value function (expected reward-

to-go) over all states. The value of terminal states is
de�ned as follows.

V ([lL; q; r]) = U(q) (2)

The value of nonterminal states of the MDP is de�ned
as follows.
V ([li; q; r]) =

max
j

X

q0;�r

P
j
i+1((q

0;�r)jq) V ([li+1; q
0; r ��r]) (3)

This de�nes a �nite-horizon MDP, or equivalently,
a state-space search problem that can be represented
by a decision tree or AND/OR graph. It can be solved
using standard dynamic programming or using a search
algorithm such as AO*

Theorem 1 Given a progressive processing unit u, an
initial resource allocation r0, and a reward function
U(q), the optimal policy for the corresponding MDP
provides an optimal strategy to control u.

Proof: Because there is a one-to-one correspondence
between the reactive control problem and the MDP (in-
cluding the fact that the PRU transition model satis�es
the Markov assumption), and because of the optimality
of the resulting policy, we conclude that it provides an
optimal reactive strategy to control the execution of the
given progressive processing unit. 2
We note that the number of states of the MDP is

bounded by the product of the number of levels L,
the maximum number of alternative modules per level
maxi pi, the number of discrete quality levels, and the
number of possible resource vectors. While resource
measures could vary over a large range, the size of the
control policy can be reduced by using a coarse unit.
Therefore, unit choice introduces a tradeo� between the
size of the policy and its e�ectiveness.
We have implemented the policy construction algo-

rithm for a problem that involves only one resource
(time). Figure 2 shows the results we got with a task
structure composed of 3 levels, with 5 modules per level
(all levels included a dummy 6th module that allows
the controller to skip that level). The �ve unit sizes in
this case represent multiples of 1, 10, 20, 40, and 80
of the original quality and time units. The dark bars
show the time to construct the policy (logarithmic scale
measured in milliseconds). The light bars show the rel-
ative reduction in the expected value of the initial state
with respect to the optimal value. (The reduction in
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Figure 2: The e�ect of resource unit size on policy con-
struction time and value

value is due to the fact that the process is modeled
using coarse resolution and a compact policy.) It is
interesting to note that it takes 15619 seconds to con-
struct a precise policy with no error (left columns) while
an approximate policy with a unit size of 20 (middle
columns) takes only 0.27 seconds and the error is only
3.6%. These preliminary results are consistent with our
intuition that the optimal policy can be approximated
with a coarse resource unit and a compact policy.

Optimal Control of multiple PRUs using

opportunity cost
Suppose now that we need to schedule the execution
of a complete plan that includes n + 1 activities. One
approach is to construct an optimal schedule by gener-
alizing the solution presented in the previous section.
That is, one could construct a large MDP for the com-
bined sequential decision problem including the entire
set of n+1 PRUs. Each state must include an indicator
of the activity (or PRU) number, i, leading to a general
state represented as [i; l; q; r].
This rather complex MDP is still a �nite-horizon

MDP with no loops. Moreover, the only possible transi-
tions between di�erent PRUs are from a terminal state
of one PRU to an initial state of a succeeding PRU.
Therefore, we can solve this MDP by computing an op-
timal policy for the last PRU for any level or resource
availability r, then use the value of its initial states to
compute an optimal policy for the previous PRU and
so on.

Theorem 2 Given a plan P represented as a sequence
of progressive processing units, and a reward function
Ui(q) associated with each PRU, the optimal policy for
the corresponding MDP provides an optimal strategy to
control P.

This is an obvious generalization of Theorem 1. The
complete proof, by induction on the number of PRUs,
is omitted.
We now show how to measure the e�ect of the remain-

ing n PRUs on the execution of the �rst one. This e�ect
can be reformulated in a way that preserves optimality
while suggesting an eÆcient approach to meta-level con-
trol that does not requires run-time construction of the
policy.

De�nition 7 Let V �(i; r) = V ([i; l0; 0; r]) denote the
expected value of the optimal policy for the last n� i+1
PRUs.

To compute the optimal policy for the i-th PRU, we
can simply use the following modi�ed reward function.

U 0

i(q; r) = Ui(q) + V �(i+ 1; r) (4)

In other words, the reward for completing the i-th activ-
ity is the sum of the immediate reward and the reward-
to-go for the remaining PRUs using the remaining re-
sources. Therefore, the best policy for the �rst PRU can
be calculated if we use the following reward function for
�nal states:

U 0

0(q; r) = U0(q) + V �(1; r) (5)

De�nition 8 Let OC(r;�r) = V �(1; r)�V �(1; r��r)
be the resource opportunity cost function.

The opportunity cost measures the loss of expected
value due to reduction of �r in resource availability
when starting to execute the last n PRUs.

De�nition 9 Let the OC-policy for the �rst PRU be
the policy computed with the following reward function:

U 0

0(q; r) = U0(q)�OC(r0; r0 � r)

The OC-policy is the policy computed by deducting
from the actual reward for the �rst task the opportunity
cost of the resources it consumed.

Theorem 3 Controlling the �rst PRU using the OC-
policy is optimal.

Proof: From the de�nition of OC(r;�r) we get:

V �(1; r0 ��r) = V �(1; r0)�OC(r0;�r) (6)

To compute the optimal schedule we need to use the re-
ward function de�ned in Equation 4 that can be rewrit-
ten as follows.

U 0

0(q; r0 ��r) = U0(q) + V �(1; r0)�OC(r0;�r) (7)

Or, equivalently:

U 0

0(q; r) = U0(q) + V �(1; r0)�OC(r0; r0 � r) (8)

But this reward function is the same as the one used
to construct the OC-policy, except for the added con-
stant V �(1; r0). Because adding a constant to a reward
function does not a�ect the policy, the conditions of
Theorem 2 are met and the resulting policy is optimal.
2

Theorem 3 suggests an optimal approach to schedul-
ing an arbitrary set of n+1 activities by �rst using an
OC-policy for the �rst PRU that takes into account the
resource opportunity cost of the remaining n activities.
Then the OC-policy for the second PRU is used tak-
ing into account the opportunity cost of the remaining
n � 1 activities and so on. To be able to implement
this approach we need to have the control policies read-
ily available. This issue is addressed in the following
section.
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Current work and open problems
In the previous section, we presented a solution to the
control problem of multiple progressive processing units
without accounting for its computational complexity.
In particular, the opportunity cost must be computed
and sometimes revised when the plan is modi�ed dur-
ing execution. Once the opportunity cost is revised, a
new policy for the current PRU must be constructed.
In principle, �nding the exact opportunity cost requires
the construction of an optimal policy for the entire plan.
In this section we discuss current work aimed at reduc-
ing the complexity and enhancing the applicability of
this framework.

Using precompiled control policies In order to
implement an e�ective reactive controller for progres-
sive processing, one should avoid reconstruction of con-
trol policies on-board or at the control center. Instead,
we propose to:

1. use a fast approximation scheme to estimate the op-
portunity cost; and

2. use pre-compiled policies for di�erent levels of oppor-
tunity cost.

We have examined several approaches to estimating
the opportunity cost. Function approximation tech-
niques seem to be suitable for learning the opportu-
nity cost from samples of examples for which we can
compute the exact cost o�-line. In order to avoid com-
puting a new policy (for a single PRU) each time the
opportunity cost is revised, we can divide the space of
opportunity cost into a small set of regions representing
typical situations. For each region, an optimal policy
would be computed o�-line and stored in a library. At
run-time, the system will �rst estimate the opportunity
cost and then use the appropriate pre-compiled policy
from the library. These policies remain valid as long as
the overall task structure and the utility function are
�xed.

Handling multiple resources As the number of re-
sources grow, the size of each module descriptor and
the overall policy also grow. This growth is exponen-
tial in the number of resources. Because we anticipate
the number of resources in this application to remain
small (two or three), the e�ect on computational com-
plexity of policy construction is limited. Another source
of complexity, however, is the approximation of the op-
portunity cost of multiple resources. In general, the
OC function is not additive over resources. However,
independence relationships between certain cost func-
tions could simplify the approximation by allowing us
to approximate separately each cost function.

More complex task structures The progressive
processing task structures we have studied so far are
rather limited. They are composed of a sequence of
levels each with a set of alternativemethods. We are ex-
amining several extensions including trees and directed
acyclic graphs. Cycles in the task structure could be
handled as well (making the control problem an in�-

nite horizon MDP). Cycles could be used to represent
multiple attempts to execute actions that fail.

Partially-ordered plans Another generalization of
this work is to allow the components of a PRU or the
overall plan to be partially ordered. The e�ect of this
generalization on a single PRU is that the state of the
MDP must include the \frontier" of the execution sub-
graph with several di�erent modules being ready for
execution. This is much more complex than the sin-
gle point in sequence of levels we are currently using.
This generalization will require some restrictions on
how large the state space may grow (for example, by
limiting the non-linearity of the plan to just a few choice
points). Handling an overall plan that is partially or-
dered is not diÆcult, as long as the di�erent activities
remain independent.

Dependency among activities Right now we as-
sume that di�erent activities in a plan are independent,
except for the fact that they share resources and con-
tribute to the comprehensive value of the plan. De-
pendency among activities could be represented using
additional state variables that capture the sources of
dependency. Each action in this model will have possi-
ble stochastic e�ects on some state variables. Activities
(or speci�c methods in the progressive processing task
structure) could be conditioned on these state variables.
The size of the state space grows exponentially with the
number of additional state variables, making it hard to
model highly dependent activities.

Conclusion

We present an approach to meta-level control of the
activity of planetary rovers by mapping each activity
into a progressive processing unit and formulating the
control problem as an MDP. It is shown that an optimal
policy for a plan composed of a sequence of activities
can be constructed by controlling a single PRU at a
time, taking into account the opportunity cost of the
remaining tasks. To apply this model to control the
operation of an autonomous rover, a fast approximation
of the opportunity cost is needed. Finally, a highly
reactive controller is described that uses a library of
pre-compiled control policies to operate in a dynamic
environment.
A less complex model of progressive processing

that relies on heuristic scheduling has been studied
in (Mouaddib and Zilberstein 1997). The task struc-
ture, however, is limited to a linear set of levels with
one module per level and no quality uncertainty or qual-
ity dependency. The heuristic scheduler is fast, but it
is not optimal. Heuristic scheduling of computational
tasks has also been studied by Garvey and Lesser (1993)
for the design-to-time problem-solving framework. The
latter framework represents explicitly non-local interac-
tions between sub-tasks.
The progressive processing framework relates to a

large body of work within the systems community on
imprecise computation (Liu et al. 1991). Each task
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in that model is decomposed into a mandatory subtask
and an optional subtask. A variety of scheduling algo-
rithms have been developed for imprecise computation
under di�erent assumptions about the optional part.
Our model allows for a richer representation of quality
and resource uncertainty and quality dependency. Un-
like imprecise computation, the schedule constructed by
the MDP scheduler is a conditional schedule; the selec-
tion of modules is conditioned on the actual resource
consumption and outcome of previous modules.
The application of dynamic programming to control

interruptible anytime algorithms has been studied by
Hansen and Zilberstein (1996). Optimal monitoring
of progressive processing tasks using a corresponding
MDP has been studied by Mouaddib and Zilberstein
(1998) with respect to a simpler task structure and
without the notion of quality uncertainty and quality
dependency. The notion of opportunity cost is borrowed
from economics. It has been used previously in meta-
level reasoning by Russell and Wefald (1991). Horvitz
(1997) uses a similar notion to develop a model of con-
tinual computation in which idle time is used to solve
anticipated future problems.
The use of pre-compiled control policies to construct

a highly reactive real-time system has been studied by
several researchers. For example, Greenwald and Dean
(1998) show how a real-time avionics control system
can use a library of schedules that cover all possible
situations. Each schedule is conditioned on the state of
the ight operation.
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The reactive meta-level controller being developed by 
Zilberstein and Mouaddib is novel in borrowing techniques 
previously used on pure computational tasks to physical 
rover mission tasks. One of the methods key ideas is to 
apply cost/benefit metrics to every activity level to be 
executed on the path to accomplish a given mission goal. 
This is a potentially powerful method to assess alternate 
paths from which an optimum solution can be selected for 
overall mission effectiveness. 

As noted by the authors the additional problems in 
applying this approach to space missions are: 

• instead of a single metric for a given step there are 
multiple metrics that govern the cost/benefit of space 
mission activities,  

• the determination of the metrics value is imprecise, 

• activity levels may include several alternate steps and 

• identifying the optimum solution in a dynamic 
complex system. 

I recommend that the authors also consider two other 
important aspects of space missions: 

• the time required by the method to both make  
predictions of the mission states and to decide what 
path to recommend, and 

• the identified alternate steps are likely to be quite 
complex and invoke additional set of constraints and 
resource needs that must be satisfied before execution. 

It is in the addressing of all the above problems that the 
potentials of their method can be reached. A prototyping 
approach using a segment of a rover mission scenario will 
both mature the method and showcase its potential 
benefits. This requires detailed models of the components 
of the system, the mission rules and constraints. 
Additionally a real-time simulation allowing closing the 
loop will reduce the uncertainties associated with the 
cost/benefit metrics. 

Commentry on: 
Optimizing Resource Utilization in Planetary Rovers  

by Shlomo Zilberstein and Abdel-Illah Mouaddib 

Abdullah Aljabri  
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Abstract
This paper compares and contrasts several coordination
schemes for a system that continuously plans to control
collections of rovers or spacecraft using collective mission
goals instead of goals or command sequences for each
spacecraft.  A collection of self-commanding robotic systems
would autonomously coordinate itself to satisfy high level
science and engineering goals in a changing partially
understood environment – making feasible the operation of
tens or even a hundred spacecraft.

1. Introduction
While explicitly commanding a spacecraft via low level
command sequences has worked spectacularly on previous
NASA missions, there are limitations deriving from
communications restrictions – scheduling time to commun-
icate with a particular spacecraft involves competing with
other projects due to the limited number of deep space
network antennae.  This implies that a spacecraft can spend
a long time just waiting whenever a command sequence
fails. This is one reason why the New Millennium program
has an objective to migrate parts of mission control tasks
onboard a spacecraft to reduce wait time by making
spacecraft more robust [Muscettola et al. 1997].  The
migrated software is called a “remote agent” and can be
partitioned into 4 components:

• a mission manager to generate science goals,
• a planner/scheduler to turn goals into executable

activities through reasoning about expected future
situations,

• an executive/diagnostician to initiate and maintain
activity execution while interpreting sensed events
through reasoning about past and present situations,
and

• a conventional reactive controller to interface with the
spacecraft to implement an activity’s execution.

In addition to needing remote planning and execution
for isolated spacecraft, a trend toward multiple-spacecraft
missions points to the need for remote distributed planning
and execution.  The past few years have seen missions with
growing numbers of probes.  Pathfinder has its rover
(Sojourner), Cassini has its Huygens lander, and Cluster II

is scheduled to launch in 2000 and has 4 spacecraft for
multi-point magnetosphere plasma measurements.  This
trend is expected to continue to progressively larger fleets.
For example, one proposed interferometer mission
[Mettler& Milman 1996] would have 18 spacecraft flying
in formation in order to detect earth-sized planets orbiting
other stars.  Another proposed mission involves 44 to 104
spacecraft in Earth orbit to measure global phenomena
within the magnetosphere.

This paper compares and contrasts 3 ways to distribute
a planner/scheduler amongst a population of spacecraft or
rovers that have separate executive/diagnosticians and
reactive controllers.  The first places the planner/scheduler
on a single platform that remotely commands the others.
The second is more distributed in that it replicates a
planner across the population to let each platform plan its
own activities, but a single platform handles goal
distribution.  The last approach advertises all goals and lets
each platform bid for a goal based on how well its local
planner can satisfy the goal given local information.
These approaches delineate a space of approaches where
the platform that distributes tasks maintains progressively
less information on the entire constellation.

This paper’s sections subsequently describe 3 thought
experiments for multi-platform missions that motivate 8
performance metrics for evaluating approaches toward
continuous task-distribution-based coordination, compare
and contrast 3 coordination methods, discuss related work,
and finally conclude.

2. Multi-Platform Thought Experiments
In order to focus this discussion on distributed autonomy in
space, consider different types of future multi-platform
missions.  There are 4 kinds of such missions depending on
the reason for proposing multiple platforms:

• improved coverage when observing/exploring large
areas (like the number of identical small satellites
with scatterometers proposed for the Ocean Surface
Wind Measurement Program (EOS-5));

• specialized probes with explicitly separate science
objectives (like Cassini with Huygens and Pathfinder
with Sojourner);
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• multi-point in-situ sensing for observing large scale
phenomena that are only detectable with multiple
spatially separated in-situ sensors (like for observing
global magnetospheric phenomena with spatially
separated plasma sensors in the Magnetospheric Multi
Scale or Cluster II missions); and

• building large synthetic aperture sensors with many
small spatially separated sensors for imaging very
remote targets (like Constellation-X, Terrestrial Planet
Finder, and TechSat-21).

These reasons for having multiple platforms in a
mission are not exclusive.  For instance, the Air Force’s
TechSat-21 mission concept [Martin&Stallard 1999]
involves a constellation of clusters of platforms.  Each
cluster forms a synthetic aperture for radar sensing, and the
number of clusters depends on the desired global coverage.

2.1. Coordinating Task Distribution
In missions where each probe performs its task in isolation,
the difference between an autonomous multi-platform
mission and many autonomous single platform missions
involves distributing tasks to the different platforms.
While the task distribution for multiple autonomous single
platform missions is determined on the ground, an
autonomous multi-platform mission can distribute and
redistribute tasks remotely.  This feature improves both
distribution quality and robustness by letting the spacecraft
use local information to optimize the initial task
distribution and to redistribute tasks when a spacecraft
suffers an anomaly, unexpectedly finishes a task early, or
detects an unanticipated science opportunity.

As an example of coordinated autonomous task
distribution, consider multiple rovers surveying rocks in an
area on Mars using MISUS [Estlin et al. 1999].   In this
system a Mars lander manages a population of rovers by
analyzing data from past observations, determining new
observations, assigning observation goals to rovers, and
collecting data as each rover moves from rock to rock and
performs its experiments in isolation (fig. 1).  This system
autonomously maximizes science return while minimizing
the execution time of the most heavily tasked rover.

While MISUS focused on a multi-rover scenario,

much of the developed infrastructure applies to any multi-
platform mission with a number of identical platforms that
operate in isolation.  This is includes most of the improved
coverage and specialized probe classes of missions.  As an
example of this generalization, consider replacing the Mars
lander and the rover population with a ground station and a
constellation of RADARSATs like the one illustrated in
figure 2.  Currently the Canada Centre for Remote Sensing
manages a single RADARSAT [CCRS 1998] in a sun-
synchronous orbit.  This satellite can observe any location
around the poles on a daily basis and any location around
the equator in 6 days or less.  To decrease the equatorial
delay time, consider replacing the single satellite with 6
equally spaced RADARSATs.  The resultant constellation
decreases the equatorial delay time to one day.  A system
like MISUS could manage this constellation since each of
the 6 satellites operates independently of the others.

2.2. Coordinating Task Execution
The multi-point in-situ sensing and large synthetic aperture
missions differ operationally from the other 2 classes in
that the separate spacecraft do not operate in isolation.  For
instance consider the Air Force’s TechSat-21 mission
concept (fig. 3).  TechSat-21 involves a constellation of
clusters of spacecraft.  While each cluster functions in
isolation, spacecraft in a cluster have tightly coordinated

FIG 2: Operating modes for one of a constellation of
radar satellites

FIG 3: Operating modes for clusters in TechSat-21

Status & Observations

Goals

Science 
Analysis

FIG 1: Coordinating multiple rovers with MISUS
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activities.  These activities include tight beam commun-
ications, synthetic aperture radar (SAR), and geolocation.

In many respects coordinated task execution is easier
than coordinated task distribution.  For the smaller
missions designating a master spacecraft that commands
the other (slave) spacecraft as though they were physically
attached solves this problem, but bandwidth restrictions
keep this approach from scale with either the number of
slaves or the complexity of each slave.  Resolving this
scaling issue is outside this paper’s focus.

2.3. Autonomy Architectures
In an earlier paper [Barrett 1999], I described 3 different
autonomy architectures for a constellation of spacecraft
involving leaders, followers, and slaves.  Here I expand
this taxonomy to also include contractors.  The number of
autonomy modules on a spacecraft determines which of the
4 classes it falls into:

• a slave has no modules and is tele-operated by the
reactive control module of another nearby spacecraft;

• a follower has both an executive/diagnostician and a
reactive controller (like many existing spacecraft);

• an contractor has a follower’s components and a
planner/scheduler to optimize local activities (like
DS1’s remote agent experiment); and

• a leader has all four components.

With these 4 classes, we can define a multi-platform
mission’s autonomy architecture by stating the class of
each platform, and how the collection of platforms
coordinate their activity.  In terms of MISUS, the
architecture consists of having the lander lead, and letting
the rovers act as followers or contractors depending on the
desired local autonomy.

Given a multi-platform mission, there are two sets of
metrics for evaluating the acceptability of autonomy
software.  The first set motivates minimizing the amount of

remote autonomy and has 4 metrics:

• the amount of explicit control an operator has over the
constellation’s activities,

• the feasible accuracy of modeling the constellation’s
activities on the ground,

• the autonomy software’s testability, and
• the amount of needed onboard computing power.

While the first set of metrics tend to be maximized by
limiting the amount of autonomy on a constellation, the
second set of 4 evaluation metrics are maximized by
increasing the amount or remote autonomy:

• the platforms’ event response time,
• the required bandwidth between platforms and to

Earth,
• the quality of the downlinked data, and
• the functional redundancy.

3.  Coordinating Multiple Planners
In [Rabideau et al. 1999], others and I compared 3 methods
for coordinating a population of rovers from a central
lander in the MISUS scenario (figure 4).  We used central
planning to manage a population with a leader-follower
architecture, where the leader generates plans that are
subsequently executed by the followers.  In order to assure
each plan’s correctness, the lander needs to acquire large
amounts of state information on the rovers to appropriately
determine if they can execute their plans.

Distributed planning reduces the amount of needed
state information by using a goal distribution planner.  This
planner takes a subset of the rovers’ collective state
information with less precise models of the rovers, and it
produces an abstract plan with enough detail to determine
how to distribute the goal activities among the rovers.  The
lander then transmits goals to the appropriate rovers.

Another way to migrate planner/schedulers onto the

Onboard
Planners

Onboard
Planners

Commands

Planner

Central Planning
Goal Distribution
Planner

Goal Sets

Distributed Planning
Goal Set

Bid for goal

Bid acceptance
or rejection

Contract Networks

rockgroup_spectra 9.721

goto 274.141 581.147 20
turn
rock
goto
turn
pano

goto -12.504 5.857 -2.193
turn -0.1364 -0.3094 0.3087
panoramic_spectra
goto -492.54 -150.22 18.11
turn -0.7464 -0.5632 0.157
rockgroup_spectra 14.033

Single goal
for auction

FIG 4: Approaches to task distribution based coordination
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rovers uses a central auctioneer to distribute goals, and the
rovers use onboard planners with local state information to
determine appropriate bids for each goal as it arises.  This
approach is an instance of the contract network protocol
[Smith 1980, Sandholm 1993] – a commonly used
coordination paradigm within the distributed artificial
intelligence community.  Within a contract net protocol, a
leader announces a task to a set of contractors, each
contractor bids for it, and the leader awards the task to the
contractor with the best bid.

3.1.  Central Planning
The simplest way to extend single-platform spacecraft
autonomy research to autonomous multi-platform missions
involves using a master/slave approach where a single
leader performs all autonomy reasoning.  The slaves only
transmit sensor values to the leader and forward control
signals received from the leader’s reactive controller to
their appropriate local devices.   In this way all spacecraft
are treated as a single multi-platform spacecraft.

Both single and multiple platform autonomous
spacecraft must respond to a (somewhat) dynamic,
unpredictable environment.  In terms of high-level, goal-
oriented activity, a planner needs to modify spacecraft
sequences to account for fortuitous events such as
observations completing early and setbacks such as a
failure to acquire a guide star for a science observation.

The need to rapidly respond to unexpected events
motivates continuous planning, an approach where a
planner continually updates a sequence in light of changing
operating context.  In such an operations mode, a planner
would accept and respond to activity and state updates on a
one to ten second time scale.  CASPER [Chien et al. 1999]
is an example of a continuous planner based on a heuristic
iterative repair approach toward planning [Zweben et al.
1994, Fukunaga et al. 1997].  This approach takes a
complete plan at some level of abstraction and manipulates
its actions to repair detected flaws.  Example flaws would
involve an action being too abstract to execute or many
simultaneous actions with conflicting resource needs.

Making a heuristic iterative repair planner continuous
within a planner/scheduler module results in figure 5’s
algorithm.  The first line assures that the PROJECTION
variable always reflects how the state of a rover, or a
spacecraft, should evolve as its plan executes, and the last
line causes this execution by passing near-term activities to
the executive/diagnostician.

The expected state evolution changes as a plan gets
new goal activities and the perceived state diverges from
expectations.  This divergence is caused by unexpected
exogenous events and activities having unexpected
outcomes. Since a planning model can only approximate
the reality experienced during execution, these unexpected
state changes can always to happen.

At any moment the projection can detect flaws in a
local plan, and lines 2 through 4 select and apply repair

methods to fix these flaws.  For instance, a satellite’s
observation activity can take an unexpectedly long time to
complete.  Depending on the delay, a subsequent
observation may be impossible due to the target being too
far behind the satellite when the observation starts.  A
repair method might fix the flaw by rescheduling the
observation at a later time.

With respect to our evaluation metrics, using a
continuous planner with a master/slave approach toward
multi-platform coordination facilitates allowing a variable
amount of remote autonomy.  At one extreme the
continuous planner is given low-level command sequences
and can only apply a go-to-safe-mode repair method upon
detecting a flaw.  This extreme maximizes the first set of
metrics.  Another extreme reduces the first set of metrics
while improving the second set.  Here the planner is only
given a set of abstract activities and uses local information
and heuristics improve event response time and the quality
of downlinked data.  While functional redundancy and
inter-platform bandwidth are unaffected by moving from
one extreme to another, turning the slaves into followers
increases redundancy and reduces bandwidth.  Due to how
easily this change can degrade the event response time,
turning slaves into followers is an active research topic in
the multi-agent research community [Tambe 1997].

3.2.  Distributed Planning
Turning followers into contractors raises issues regarding
how to coordinate multiple planners.  In distributed
planning, this coordination is achieved through using a
continuous goal distribution planner on one platform, and
this planner continuously manages the distribution of goals
based on continuously updated partial information on the
other platforms.  For instance, the distribution planner
might model rovers in a multi-rover scenario as points on a
plane where each rover can travel in a straight line from
one goal activity’s observation target to another’s.

With this abstract characterization, the distribution
planning problem becomes a Multiple-Traveling Salesman

Given: a PLAN with multiple activities
a PROJECTION of PLAN into the future

1. Revise PROJECTION using the currently
perceived state and new goal activities from the
mission manager.

2. Heuristically choose a plan flaw found in
PROJECTION.

3. Heuristically choose a flaw repair method.
4. Use method to alter PLAN & PROJECTION.
5. Release relevant near-term activities in PLAN to

the real-time system.
6. Go to 1.

FIG 5:  Continuous planning using heuristic iterative
repair
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Problem (MTSP) [Johnson&McGeoch 1997] where the
members of a sales team must collectively visit each of a
set of cities and the maximum traveling time of the
salesmen is minimized.  While this is a NP-Complete
problem, there are fast greedy approaches that find slightly
sub-optimal solutions.  By encoding one of these
approaches into our distribution planner, the lander can
both determine how to distribute the goal activities and
provide a rough estimate on the order in which a rover
should visit its targets to perform the goal activities.

With respect to our evaluation metrics, distributed
planning facilitates variable autonomy both with the
ground and across the platforms.  Minimizing autonomy
across platforms involves making the distribution planner
use full information and generate low level action
sequences for the other platforms, which can only execute
their actions.  This restriction turns distributed planning
into the previously evaluated central planning approach.

Maximizing autonomy on the contractor platforms has
the same effects as maximizing autonomy for the central
planner, but also adds a reduction to inter-platform
bandwidth needs.  The lead platform no longer needs to
maintain full state information, and each platform’s
planner can locally respond to events without informing
the leader.  Now a contractor can resolve a flaw by either
quietly shuffling its local activities or reporting failure to
the leader upon deleting a local activity.  This quiet shuffle
reduces bandwidth needs while failure reporting facilitates
moving activities between platforms via the leader’s
continuously repairing its goal distribution plan.

3.3.  Contract Networks
Minimizing the amount of continuously updated contractor
information on the leader results in taking a contract
network approach toward coordinating multiple planners.
Here a leader advertises each goal and each contractor bids
on the goals based on its local information.  To respond to
an unexpected event, a contractor will either quietly shuffle
its activities or delete a local activity and report failure to
the leader.  Upon hearing of a failure, the leader can re-
advertise the failed goal for auction.  Notice that there is no
need for continuously updated partial contractor
information – the leader does not need to know anything
about the contractors to auction a goal.

As shown in figure 4, using a contract net protocol to
implement a greedy solution to the MTSP involves making
the lander take goal activities and incrementally advertise
them to all rovers.  Upon receiving a task, a rover uses an
onboard planner to try to fit a solution to the goal activity
into its current schedule.  Upon succeeding, a rover bids its
total projected travel distance upon including the new
observation. Rovers that fail to insert the task within a time
limit do not participate in the auction.  Upon receiving all
bids, the lander awards the task to the rover with the
smallest bid.  By bidding the total distance the rovers

minimize the maximum rover travel distance – an MTSP
solution.

With respect to our evaluation metrics, letting an
operator restrict the platforms that can bid for certain
activities results in a system with variable autonomy.  At
one extreme the operator can specify a low level activity
sequence for each platform, and at the other the leader gets
a set of high level goals that can go to any platform.

As before, the first extreme scores best on the
autonomy minimization metrics and the second scores best
on the autonomy maximization metrics.  While this
approach has lower inter-platform bandwidth needs than
the other approaches, it has more computational overhead
and assumes a greedy approach toward optimization.

4. Related Work
While there is a large literature on cooperating robots, most
focuses on behavioral approaches that do not explicitly
reason about partitioning goals and planning courses of
action.  Three notable exceptions are GRAMMPS
[Bumitt&Stentz 1998], MARS [Fischer et al. 1995], and
RETSINA [Paolucci et al. 1999].  GRAMMPS is a system
coordinating multiple mobile robots visiting locations in
cluttered partially known environments.  This system
shares quite a bit similarity with our central goal allocation
with distributed planning architecture for rovers. Both
systems solve an MTSP problem to distribute targets, and
both have low level planners on each mobile robot, but
GRAMMPS focuses on path planning while learning a
terrain instead of focussing on resources and exogenous
events.

MARS on the other hand is a cooperative transport-
ation scheduling system that shares many similarities with
the contract net approach.  Once again the differences
involve a focus on multiple resources, exogenous events,
and variable autonomy.

Finally RETSINA uses peer-to-peer coordination with
an HTN planner for local planning.  While the use of
heuristic iterative repair here points to one difference
between the approaches.  The main difference involves
RETSINA’s not modeling known exogenous events and
not providing default mechanisms for initially distributing
goals and transferring goals to resolve execution failures.

5. Conclusions
This paper compared and contrasted 3 continuous task-
distribution-based coordination schemes for commanding
multiple platforms with collective goals instead of goals or
command sequences for each platform: central planning,
distributed planning, and contract networks.  All schemes
supported variable autonomy and were evaluated with
respect to 8 different metrics.  At the lowest autonomy
setting, all schemes devolved into commanding the
platforms with low level sequences, and at the highest
autonomy setting the schemes differed primarily in terms
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of needed onboard computing, inter-platform bandwidth,
and redundancy.  While central planning kept all
computing on the leader, distributed planning spread the
computing overhead across all platforms.  The result was a
decrease in inter-platform bandwidth needs and an increase
in redundancy with an unchanging total computing
overhead.  Contract networks further improved the
bandwidth needs and redundancy, but this scheme also
increased the total computing overhead by letting each
platform see and bid for each goal.

Reasoning about incremental autonomy for distributed
planning and contract networks results in a realization that
these approaches toward coordinating multiple planner/
schedulers can be combined.  The resultant approach
would used a goal distribution planner, but would only
collect enough information to limit the number of
platforms that participate in an auction.  One avenue for
future work involves building a coordination mechanism
that spans the space between contract networks and
distributed planning. Another future research avenue
involves generating joint activities for multiple spacecraft/
rovers to collectively satisfy and would extend our
approach to handle constellations of clusters of platforms
(in TechSat-21).  Finally, a third research direction
involves making the rovers/orbiters compete for shared
resources, like communications opportunities.
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Commentary on”From  Rovers to Orbiters:  Continues task distribution based 
coordination” 

Jonathan Gal-Edd 
Jgaledd@pop500.gsfc.nasa.gov 

 
 
Paper scope:  
 
Expand   4 components of “remote agent”  to a 
distributed/constellation  environment. The remote agent 
module has 4 components: Mission manager, 
Planner/scheduler, Executive/diagnostician, implement 
activity on spacecraft. The paper looks at 3 modules, 
where in each module we progressively distribute more 
functionality. Module a: centralized planing ; distributed 
executive and implementation; Module b: Distribute 
planning; Module c: Goal setting by bidding. 
 
Comment on range of planning options 
 
 The paper presents the range of planning options 
available to support rovers. It is a good high level 
overview of the available options, and which variables 
should be addressed in each option. Moving from 
centralized planning through distributed planning to goal 
distribution. 
 
 “contractor” class for the autonomy module 
 
Previous papers discussing Autonomy Architecture had a 
slave, follower and leader classes. This papers adds the 
new class of contractors.  This class and the use of using 
contract networks with goal settings is the “new” 
interesting point of the paper. 
 
Comment on Planning 
 
The main objective of the paper is planning. It takes two 
and half pages until we reach the planning discussion. 
And then the more complicated topics such as distributed 
planning and contact networks are discussed in one short 
section.  As this audience is familiar with planning, I 
would skip the back ground and get  have a more detailed 
discussion about the distributed planning and contract 
networks.  We need to show how the MTSP theory is 
applicable to space application. 
 
Performance metrics 
 
The paper mentions 8 performance metrics.  The metrics 
are: the amount of explicit control an operator has, 
feasible accuracy of modeling on the ground, software 

testability, onboard computing power, platform event 
response time, bandwidth, quality of downlink data, 
redundancy.  These are important Metrics however, the 
use of these metrics to compare between various planning 
modules is not detailed. For example Contract networks 
section has no discussion about these variables. 
 
No details in  Discussion 
 
The paper is high level, there fore it is difficult to find any 
thing “wrong” with it. Being high level the paper does not 
give specifics when and how to use each planning 
module.   
 
Conclusion 
 
The background of this commentator is operability and 
dealing with spacecraft autonomy.  I am used to dealing 
with specific problems and solving them. This paper is 
high level and is not detailed enough to understand the 
implementation of the various planning options. In   goal 
setting contract network option it does not show how this 
can be done in space. 
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Abstract

Proposed missions to explore comets and moons will
encounter environments that are hostile and unpre-
dictable. Any successful explorer must be able to
adapt to a wide range of possible operating condi-
tions in order to survive. The traditional approach of
constructing special-purpose control methods would
require information about the environment, which is
not available a priori for these missions. An alter-
nate approach is to utilize general control with sig-
nificant capability to adapt its behavior, a so called
adaptive problem-solvingmethodology. Using adap-
tive problem-solving, a spacecraft can use reinforce-
ment learning to adapt an environment-specific search
strategy given the craft’s general problem solver with
a flexible control architecture.

Introduction
Because of light-time communication delays, exploration
missions require an autonomous explorer that can adapt to
handle possible environments. For autonomous planning
systems, the high-level actions of the spacecraft must be
planned with sufficient environmental information to en-
sure that the resulting plans are admissible. A spacecraft
could easily be lost based on inappropriate behavior in a
particular environment due to overly-generic control meth-
ods (Minton 1996).

On the other hand, developing and testing domain-
specific control methods is extremely difficult, and requires
support of a domain expert. Moreover, the domain expert
must have knowledge about the environment in which the
spacecraft is operating, which is not available before the
spacecraft arrives at the location to explore. If experts are
not available, the spacecraft must be able to automatically
adapt a flexible control structure specific to the new envi-
ronment.

Adaptive problem solvingaddresses these problems by
enabling the development and maintenance of effective

control strategies without extensive domain-specific knowl-
edge. An adaptive problem solver is given: (1) a generic
set of control strategies and (2) a flexible control archi-
tecture, and uses a statistical method to estimate the qual-
ity of each control strategy or generate a more appropriate
strategy. Adaptive problem solving also provides hard sta-
tistical guarantees on the quality of the behavior for each
adapted control method. Using adaptive problem solv-
ing techniques, spacecraft exploration in unknown environ-
ments becomes feasible.

In this paper, we describe how adaptive problem solving
can be used to adapt the control methods of a spacecraft
in-situ. The value of this method is empirically shown in
the context of two spacecraft operations scheduling prob-
lems in a generic planning and scheduling environment. By
adapting control strategies for each domain, the lifespan
of the spacecraft is improved since the adaptive problem
solver can increase chances of spacecraft survival and con-
tinue to update the control methods based on aging hard-
ware or environmental changes.

Motivational Example
The comet lander will land on a surface of unknown den-
sity, with the goals of drilling into the comet90% and imag-
ing its surroundings10% of the time allocated to accom-
plishing goals. Situations will force these percentages to
be innapropriate. One scenario might be that the surface
of the comet is much denser than expected, so the rate of
drilling is decreased and the wear on the drill is increased.
The lander might need to adjust its priorities to take more
images instead of drilling. Another scenario might be that
drilling caused a layer of dust on the surface to drift up, the
dust might limit the visibility of the lander. Taking images
might be ineffective, so the lander might want to delay its
drilling activities until the dust settles, or take images be-
fore drilling.

Failure to adapt to these situations could cost the lander
the mission, by depleting resources too rapidly, not accom-
plishing mission objectives, or wearing out equipment. Not
all possible situations can be enumerated before the mis-
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sion; instead an adaptive problem solver checks the cur-
rent control strategy’s performance in the given environ-
ment and responds to changes by adapting the control strat-
egy, independent of the cause of the change. An adaptive
problem solver would continually adapt the control strategy
if it found the current strategy non-optimal.

Planning System
The planning and scheduling system used to evaluate the
control strategies for each model is a version of the AS-
PEN (Automated Scheduling and Planning ENvironment)
system (Fukunagaet al. 1997). ASPEN is a config-
urable, generic planning/scheduling application framework
that can be tailored to specific domains to create feasible
schedules.

ASPEN employs planning and scheduling techniques
to automatically generate a necessary activity sequence to
achieve the mission goals. This sequence is produced by
utilizing an iterative repair algorithm (Zwebenet al. 1994)
which classifies conflicts and attacks them individually.
Conflicts occur when a plan constraint has been violated
where this constraint could be temporal or involve a re-
source, state or activity parameter. Conflicts are resolved by
performing schedule modifications such as moving, adding,
or deleting activities. The target of the repair modification
is chosen by a heuristic method, and the point in the search
where this choice is made is called a choice point. For each
type of choice point, the user creates a set of heuristic meth-
ods to use with varying usage weights. The set of heuristic
methods impacts the outcome of the schedule, and effec-
tively controls the behavior of the spacecraft.

The control strategies for adaptive problem solving are
represented as sets of weighted heuristics so that they may
be robust enough to perform well over the entire problem
distribution even when they are slightly suboptimal, as op-
posed to a single heuristic which may not be as flexible to
environment or hardware changes.

The quality of a resulting schedule generated by ASPEN
is measured by a set of preferences specified by the user.
This set of preferences specifies the quality functions asso-
ciated with certain parameters in the schedule.

Adapting Control Strategies
To adapt control strategies, we can search the neighbor-
hood of a current strategy, and select higher-scoring strate-
gies. Given a set of possible control strategies, the adap-
tive problem solver selects the top strategies based on col-
lecting samples of spacecraft performance in the current
environment by running ASPEN evaluating the resulting
schedule. The top strategies are returned to the search algo-
rithm, which produces a subsequent set of hypotheses based
on previously selected hypotheses using algorithm-specific
techniques. This cycle continues until a certain amount of

Generation Step

Search Algorithm 

Adaptive Problem Solving

            Selection

Set of Control Strategies

Figure 1: Hypothesis Generation Diagram
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for hi and hbest

hbest

h1

h2

hk

H1

H

HK

2

Estimates

Problem 1

Figure 2: Adaptive Problem Solving Diagram

time has passed or another stopping criterion of the specific
search algorithm has been met (see figure 1).

Adaptive Problem Solving
The adaptive problem solver attempts to select the top
strategies from a set of strategies, supplied by the search
algorithm, whose quality is a function of unknown parame-
ters. It makes estimates of the parameters for strategy utility
and sample cost in order to achieve a requested accuracy
for a statistical decision requirement. The adaptive prob-
lem solver iteratively refines the utility and cost parameter
estimates by acquiring training examples and reevaluating
utility and cost (see figure 2).

The normal parametric model for reasoning about sta-
tistical error is used in this analysis, which assumes that
the difference between the expected utility and estimated
utility of a hypothesis can be accurately approximated by
a normal distribution. This assumption is grounded in the
Central Limit Theorem and is further discussed in (Chien
et al. 1995). The analysis would change given a different
parametric model, but the results should be analogous for
conventional models.

Since parameter estimates are refined by random sam-
pling, it is impossible to place perfect accuracy require-
ments on the selection algorithms. In practice, probabilistic
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requirements, ordecision criteria, on the relative accuracy
of the parameter estimates (and subsequent strategy selec-
tion) are chosen as parameterized forms that allow a trade-
off between accuracy and cost.

Specifically, decision requirements take a set of hypothe-
ses and a probabilistic error bound, and terminate when one
of the hypotheses can be shown to have the greatest mean,
evaluated through pair-wise comparisons, with a confidence
higher than the given confidence level. The overall confi-
dence for selection is a function of the confidence of each
pair-wise comparison. Rational analysis can be used to al-
locate error to each pairwise comparison in such a way as to
attempt to optimize the resource usage necessary to acquire
a sufficient number of samples across the comparisons to
achieve the decision requirement (Gratch & DeJong 1994).

In this analysis, the decision requirement that is used in
the adaptive problem solver is the probably approximately
correct (PAC) requirement. The choice of using PAC in this
analysis is mostly based on its prevalence rather than spe-
cific attributes of the requirement. The expected loss deci-
sion requirement was evaluated and found to have minimal
impact on the outcome.

PAC Requirement
In order to satisfy the PAC requirement, the hypothesis es-
timated to be the best must be within some user-specified
constant� distance of the true best hypothesis with prob-
ability 1 � Æ. The sum of the error from each pair-wise
comparison is bounded by this probability. LetHsel be the
expected utility of the selected hypotheses andHi be the
expected utility for the remaining hypotheses. LetĤ be
the estimate of the expected utility of a hypothesis. It is
sufficient to bound the probability of error in selection for
pair-wise comparisons with the following equation:

k�1X
i=1

Pr[Ĥi < Ĥsel � �jHi > Hsel + �] � Æ (1)

Thus the problem of bounding the overall error reduces
to bounding the error of eachk�1 comparisons of the cho-
sen best hypothesis to the rest of the hypotheses.

The normality assumption reduces equation 1 to a func-
tion of the parameter estimates, the number of examplesn

used to refine the estimates, the closeness parameter�, and
an unknown variance term�2. The two stopping criteria
for selection aredominance, which is based on achieving a
probability (Æ) through sampling thathi will perform bet-
ter on a specific problem thanhj , andindifference, which
is the probability that the difference between performances
will fall within � of 0. For the rest of this discussion,�
is ignored to simplify understanding. The equation for the
probability of incorrect selection for a pair-wise compari-
son,�i, is:

�i = �

0
@�(Hsel �Hi)

p
nq

�2sel;i

1
A (2)

We can use this relationship to determine how many
training examples to allocate to each comparison, given the
error bound on the probability of a mistake, an estimate
of the difference in expected utility, and an estimate of the
variance of each hypothesis:

nsel;i =
�2sel;i

(Hsel �Hi)2
[��1(�i)]

2 (3)

Rational Analysis
The hypothesis selection algorithm as presented does not
take advantage of unequal distribution of error. By dis-
tributing error unequally across the pair-wise comparisons
using the estimates of the sample cost and utility parame-
ters, we can attempt to satisfy the requirements using the
minimum possible cost. The general idea of rational anal-
ysis is to choose the error�i for each comparison to mini-
mize, subject to the given decision requirements:

k�1X
i=1

csel;insel;i

The algorithm must only ensure that thesumof the errors
remains less than the given bound. If one pair-wise com-
parison requires many more samples to achieve the same
amount of accuracy as another comparison, then if the first
is allowed to have more error and the second is allowed less,
the overall cost of achieving those local requirements might
be reduced. In practice, this method significantly reduces
the number of samples necessary to achieve the require-
ment for certain domains, as shown in (Gratch & DeJong
1994).

Adapting Hypotheses
In order to adapt hypotheses, search algorithms are used to
generate hypotheses in the neighborhood of the given hy-
potheses. At each level of search, an adaptive problem solv-
ing algorithm is used to evaluate the competing hypotheses
with a given confidence bound.

Local Beam Search
One algorithm used to generate and search over hypotheses
is local beam search (Russell & Norvig 1995). In a flex-
ible planning and scheduling domain, each hypothesis, or
combination of heuristics, can be represented as a vector of
percentages where the percentages of heuristics associated
with a certain type of choice point in ASPEN sum to100%
(see figure 3). A random heuristic is included for each plan
problem. The basic algorithm is included below.
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Figure 3: Hypothesis Vector Diagram

We chose a neighborhood of a vector to be defined as, for
each subset of heuristics associated with a certain choice
point, changing one of the usage percentages by a certain
range, and scaling all of the other usage percentages equal
amounts so that the sum is still100% (see figure 3). Let
l be the bound on the number of hypotheses the adaptive
problem solver can evaluate.

Genetic Algorithm

Another algorithm that is used to generate hypotheses is
a genetic algorithm (Goldberg 1989). Each hypothesis is
represented as a vector of percentages, as in the local beam
search. The three general operators (crossover, mutation,
and reproduction) are used to generate the next set of hy-
potheses to search over, and ranking the hypotheses is done
using adaptive problem solving. The crossover operator is
not aware of the different subsets of heuristics, and may
choose to split within one of those subsets. Mutation also
works without knowledge of the constraint that subsets
must sum to100%, so each subset is scaled to 100 uni-
formly after the mutation operator is run. The basic algo-
rithm is shown below.

Method Implementation

An adaptive control system of this type can be used in mis-
sion operations in multiple capacities. It can be used from
the start to design spacecraft constraints and payload, by
evaluating each of the potential designs against possible en-
vironments and comparing results. It can be used on the
ground to perform mission planning and during flight to
quickly develop new schedules based on changing domains
or spacecraft deterioration. Environmental constraints for
the spacecraft, such as the density or temperature of the sur-
face for a lander, can be determined when they are available
to the spacecraft. These constraints can be used to update
the model of the environment, and adaptive problem solv-
ing can be used to efficiently determine the optimal plan-
ning heuristics for the current environment.

Empirical Evaluation
We claim that hypothesis adaptation can efficiently find a
better set of hypotheses in a given domain. In this sec-
tion we provide evidence that in practice, these methods
can generate heuristic sets superior to those generated by
model experts.

The test of real-world applicability is based on two do-
mains related to planned space missions, using the ASPEN
planning and scheduling system. The original set of hy-
potheses that is used is the set of heuristic combinations
currently in use in these and related models. We hope this
illustrates how this type of method can be useful in real-
world domains, by improving on control strategies already
in use or updating the strategies to handle domain shifts.

Evaluation
New Millennium EO-1 Domain – New Millennium Earth
Observer 1 (EO-1) is an earth imaging satellite featuring
an advanced multi-spectral imaging device. EO-1 mission
operations consists of managing spacecraft operability con-
straints (power, thermal, pointing, buffers, consumables,
telecommunications, etc.) and science goals (imaging of
specific targets within particular observation parameters).
The EO-1 domain models the operations of the EO-1 op-
erations for a two-day horizon (Sherwoodet al. 1998). It
consists of 14 resources, 10 state variables and 38 differ-
ent activity types. Each EO-1 problem instance includes
a randomly generated, fixed profile that represents typi-
cal weather and instrument pattern. Each problem also in-
cludes 3 to 16 randomly placed instrument requests for ob-
servations and calibrations, and between 50 and 175 com-
munications satellite passes.

The score for EO-1 includes preferences for more cali-
brations and observations, earlier start times for the obser-
vations, fewer solar array and aperture manipulations, lower
maximum value over the entire horizon for the solar array,
and higher levels of propellant.

Applying the quantile-quantile (Q-Q) test to the EO-1
hypotheses shows that they are very likely normal distribu-
tions. The Q-Q test compares the quantiles of the samples
with a normal distribution, and departures in linearity of the
resulting plot show how the samples differ from a normal
distribution. Results of applying the Q-Q test to these two
domains are shown in (Gratch & DeJong 1994).

Figures 4 and 5 show scores of the generated heuristic
combinations over 35 cycles of the search algorithms. Al-
though the curves for the scores of the two different search
algorithms are different, the percentage of improvement for
the high scoring hypothesis within each cycle is similar
(128% for the linear search compared with147% for the
genetic algorithm). The percentage improvement for the
mean score is somewhat greater,161% for the genetic al-
gorithm compared with116% for the linear search. The
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Figure 4: EO-1 model search iteration maximum and aver-
age scores for 35 iterations of the local beam search (beam
= 2).
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Figure 5: EO-1 model search iteration maximum and aver-
age scores for 35 iterations of the genetic algorithm search.

high scoring heuristic combinations are also somewhat dif-
ferent: the local search hypotheses use a significantly lower
percentage of random heuristics than the genetic algorithm
hypotheses, illustrating two different local maxima in the
search space.

New Millennium Space Technologies Four Landed Opera-
tions Domain– The ST-4 domain models the landed oper-
ations of a spacecraft designed to land on a comet and re-
turn a sample to earth. This model has 6 shared resources, 6
state variables, and 22 activity types. Resources and states
include battery level, bus power, communications, orbiter-
in-view, drill location, drill state, oven states for a primary
and backup oven state, camera state, and RAM. There are
two activity groups that correspond to different types of ex-
periments: mining and analyzing a sample, and taking a
picture. Each ST-4 problem instance includes a randomly
generated, fixed profile that represents communications vis-
ibility to the orbiting spacecraft. Each problem also in-
cludes between 1 and 11 mining activities and between 1
and 24 picture experiments at random start times.
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Figure 6: ST-4 model current iteration maximum and aver-
age scores for 30 genetic algorithm generations.

The preferences for ST-4 include more imaging, more
mining, higher average battery power, fewer drill move-
ments, and fewer uplinks.

Based on the Q-Q test, hypotheses from the ST-4 domain
are likely to be normally distributed, and thus provides a
good model for adaptive problem solving (Gratch & De-
Jong 1994). Graph 6 shows the mean and high scores of
the generated heuristic combinations over 25 cycles of the
search algorithms. The high score reaches a maximum im-
provement of14%, and the mean score has a maximum im-
provement of18%.

Related Work

Evaluating control strategies is a growing research topic.
Horvitz originally described a method for evaluating al-
gorithms based on a cost versus quality tradeoff (Horvitz
1988). Russell, Subramanian, and Parr used dynamic pro-
gramming to rationally select among a set of control strate-
gies by estimating utility (which includes cost) (Russellet
al. 1993). The MULTI-TAC system considers allk-wise
combinations of heuristics for solving a CSP in its evalu-
ation which also avoids problems with local maxima, but
at a large expense to the search (Minton 1996). Fink de-
scribes a method that sets time bounds for selection as
opposed to parameter estimation accuracy, since sampling
time is not large enough to attempt to minimize the num-
ber of samples (Fink 1998). Previous articles describing
adaptive problem solving have developed general meth-
ods have been developed for transforming a standard prob-
lem solver into an adaptive one(Gratch & DeJong 1992;
1996), illustrated the application of adaptive problem solv-
ing to real world scheduling problems (Gratch & DeJong
1996), and showed how adaptive problem solving can be
cast as a resource allocation problem (Gratch & DeJong
1994). We expand on these topics by evaluating different
methods for generating hypotheses which can be used in
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adaptive problem solving to efficiently estimate their utility
and cost, considered separately.

Future Work
In the area of adaptive problem solving, additional work
has been proposed for the stopping criteria, which can be
resource bounded (specifically, time as a resource) instead
of a relaxation of the ranking requirement, as in previous
works on similar topics (Fink 1998). Different methods of
combining heuristics could be applied to problems of this
type. One method is composite strategies, from operations
research, which involve logical decisions about the rela-
tive usage of heuristics as opposed to statistical methods.
Another method is a portfolio approach, which combines
heuristics in a method similar to a financial portfolio.

Current results do not indicate any direct benefit to us-
ing either local beam search or genetic algorithms over
the alternative. In order to predict an effective search al-
gorithm for each environment, it would be useful to gen-
erate a landscape of the utilities for the hypothesis space
(Wolpert 1996), and choose the appropriate search al-
gorithm for the environment. Previous work has been
done in deterministic landscape generation (Wolpert 1996;
Whitley 1995), but no practical work has been done in
stochastic landscape generation, which is what this domain
requires.

Conclusions
This paper outlines different methods for adapting control
strategies using adaptive problem solving, with the goal of
finding a control strategy or set of control strategies that
performs well in the given planning and scheduling envi-
ronment. The purpose is validated in all three planning
and scheduling domains, by showing significant overall im-
provement in the generated plans. These results are signif-
icant in showing that autonomous spacecraft planning and
scheduling is becoming a realistic option for missions to
unknown environments.
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Abstract

The Second RadarSAT Antarctic Mapping Mission

(AMM-2) is scheduled to begin in September of 2000.

The Aspen planning system will automate the mis-

sion planning process and provide a fast-replanning

capability for responding to anomalies during opera-

tions. AMM plans consist of several hundred SAR data

swaths that must cover a ground region while obeying

resource and operational constraints. This paper de-

scribes the planning problem, the system architecture,

and the planning challenges involved.

Introduction

The Second RadarSAT Antarctic Mapping Mission
(AMM-2) is scheduled for execution on September of
2000. This will be similar to the First RadarSAT
Antarctic Mapping Mission (AMM-1) executed in 1997.
The objective of AMM-1 was to acquire complete cov-
erage of the continent, whereas the objective of AMM-2
is to acquire repeat-pass interferometry to measure ice
surface velocity of the outer regions of the continent.
The mission objective is to perform a synthetic aper-
ture radar (SAR) mapping of the Antarctic over three
consecutive 24-day repeat cycles. The SAR instrument
has several "beams" each of which takes data in a rect-
angular swath. The incidence angle of each beam is
separated by a few degrees and partially overlaps the
swaths of adjacent beams. The location of the swaths
at any given time is determined by the spacecraft orbit.
The planning problem is to select a subset of the avail-
able swaths that fully cover the Antarctic and satisfy
operational and resource constraints imposed by the
RadarSAT Mission Management O�ce (MMO). The
driving operational constraints are the limited on-board
tape recorder (OBR) capacity and downlink opportu-
nities which constrain the swath subsets that will �t on
the OBR between downlinks.
The AMM-1 experience demonstrated that manu-

ally developing mission plans was laborious and error-
prone. The plans took months to develop, and some
constraint violations were not detected until the �nal
MMO review. This required expensive and disrup-
tive last-minute revisions. An automated planner could
have quickly identi�ed constraint violations, suggested

repairs, and reduced the chance of errors, all of which
would have signi�cantly expedited the mission planning
process.
Anomalies during AMM-1 operations caused several

data takes to be lost. The missing data had to be
rescheduled for later in the mission. The new plan
had to be submitted within 36 of reacquisition, which
meant replan options had to be identi�ed within 8 hours
and a �nal plan submitted within 8 to 72 hours. To
manually turn around plans within these time con-
straints required a team of four people working from
pre-generated contingency plan segments. The missed
observations were placed into gaps in the original plan
to minimize disruptions. More extensive changes were
avoided to minimize the planning e�ort and the chance
of introducing errors. Observations that could not be
placed in this manner were simply dropped. Automated
replanning during operations would allow faster turn-
around with fewer people, and enable more extensive
changes to the schedule in order to maximize science
return.
The rest of this paper describes the automated plan-

ning system that is being constructed for AMM-2 based
on the Aspen [1,4] planning environment. This system
will develop baseline and contingency mission plans and
will be used during operations to reschedule observa-
tions missed due to anomalies.

Automated Planning System

The core planning problem is to select a subset of the
available swaths that will cover the Antarctic within
the 30 day mission horizon while satisfying all of the
OMM constraints. This requires a combination of con-
straint reasoning, for which planners are well suited,
and geometric reasoning for which they are not. The
planning system will operate in two modes: automated
and mixed-initiative. In mixed-initiative mode the hu-
man user selects the swaths using a coverage analysis
tool (SPA or STK) and has Aspen expand them into
a detailed plan. The expansion primarily consists of
deciding which downlink opportunities to use, track-
ing resource usage, and verifying adherence to opera-
tional constraints. Aspen then reports any constraint
conicts that it cannot resolve without modifying the
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swaths (e.g., they oversubscribe the on-board recorder).
The user modi�es the swath selection accordingly and
regenerates the plan. This continues until a conict-
free plan is generated. This rapid feedback allows the
user to generate a plan much more rapidly than would
be possible by hand. The mixed-initiative mode allows
the user to use his/her scienti�c judgement in selecting
swaths. In automated mode Aspen solves the problem
automatically. The user provides a set of swath oppor-
tunities for each missed observation. Aspen selects at
most one opportunity for each observation such that
the resulting plan satis�es the operational constraints
and recovers as many missed observations as possible.
Aspen can be forced to use a speci�c swaths to recover
a given observation by providing only one opportunity.
Aspen solves the overall planning problem with a com-
bination of forward dispatch and iterative repair [3,5].
A specialized set-covering algorithm (e.g., [2]) provides
a solution to the swath selection problem which guides
these two algorithms.
This mode will be used primarily in operations when

new plans have to be turned around quickly follow-
ing anomalies. Anomalies result in missing data takes
which must be rescheduled. The user provides Aspen
with a set of swaths for the missed observations. This
same capability could also support a more aggressive
mode where Aspen generates an initial mission plan
from scratch, which the user then modi�es to meet
unarticulated scienti�c preferences. The user declares
that each rectangular region of Antarctica to be imaged
is a missed observation, and provides a set of oppor-
tunities for each one (this can be done automatically
by SPA or STK). Aspen then selects swaths for these
missed observations as it would in anomaly replanning.

System Architecture
The planning system takes as input a set of swath op-
portunities, downlink opportunities, and a partial plan.
The swath opportunities may be �xed so that there is
only one swath for each missed observation and As-
pen has no swath selection decisions to make, or open
so that Aspen must select among several opportuni-
ties for each missed observation. The partial plan can
force swath-selection and downlink selection decisions,
or leave them up to Aspen. This plan is in a spreadsheet
format, which the mission planners are most comfort-
able with. The downlink opportunity �le is provided
by the MMO, and the user generates the swath oppor-
tunities �le from a coverage analysis tool (SPA).
The downlink and partial plan �les are converted into

an Aspen plan �le. Aspen expands the partial plan into
a complete plan that satis�es the MMO constraints as
encoded in the domain model. The model contains ex-
ternal dependency functions that ensure the data-take
activities in the plan are consistent with the swaths in
the swath opportunities �le. The planning algorithm
also consults this �le to perform swath selection. If
there is only one opportunity, the swath selection is
trivially solved.

Swath
opportunities

Downlink
opportunities

Partial
plan

(excel)

Aspen

Selected
swaths

complete
plan

(excel)
conflicts

SPA

Aspen
partial
plan

Aspen
plan

Figure 1: System Data Flow Architecture

Aspen generates a plan �le and a list of conicts that
it was unable to resolve (e.g., because the swaths were
�xed and caused conicts). The plan �le is converted
into an Excel format that the mission planners prefer,
and a list of swaths in SPA format (the swath request
format required by the MMO). If the swath opportuni-
ties �le was �xed, this is a pass-through operation; oth-
erwise it is a down-selection of the original �le. It will
also generate a swath �le in Satellite Tool Kit (STK)
format. STK has more powerful coverage analysis ca-
pabilities than SPA.

Status

The constraint checking capabilities are completed and
have been used to generate draft mission plans for sub-
mission to the Canadian Space Agency, and will be used
to develop more detailed plans in the upcoming months.
The planner takes a set of swaths and downlink oppor-
tunities as input, assigns the swaths to downlink op-
portunities, adds supporting activities for each swath
and checks the resulting plan for constraint violations.
These activities took weeks to perform manually dur-
ing AMM-1 development, but only minutes with the
automated planner. The operational replanning capa-
bilities will be completed by Summer of 2000 for use in
the September mission.
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Abstract

Much of the effort of the planning community is cur-
rently focused on improving the performance of dis-
junctive planners (DPs). We are interested in solving
real-world planning problems and, to that end, argue
for the use of domain knowledge in planning. Hierar-
chical task network (HTN) planners use more knowl-
edge than DPs and have advantages such as scalabil-
ity, expressiveness, continuous plan modification dur-
ing execution, and the ability to interact with humans.
We argue, however, that the field must develop meth-
ods capable of using even richer knowledge models
than those used in HTNs (and therefore DPs) in order
to make planning tools useful for complex problems.
While we applaud the development of faster DP sys-
tems and their use for planning subproblems, it may
not be best for the field to focus so many resources on
techniques that solve only a narrow subset of the prob-
lems that are faced in real-world domains.

Introduction
Much of the effort of the planning community is cur-
rently focused on improving the performance of disjunctive
planners (DPs). Kambhampati (1997) defines disjunctive
planners as planners that retain the current planset with-
out splitting its components into different search branches.
This family of planners includes Graphplan (Blum & Furst
1995), SATPLAN (Kautz & Selman 1996), and their
derivatives, all of which use STRIPS-style planning knowl-
edge to derive and solve propositional representations of
planning problems.

Most planners described in AAAI-99 and IJCAI-99 are
DPs that could solve only simple, small toy problems from
the standard corpus used for testing disjunctive planners.
(By contrast, the planning applications in IAAI-99 used
more expressive representations and methods.) The 1998
AIPS planning competition also focused considerable effort
on simple STRIPS-encoded toy problems that were solv-
able (or nearly so) by DPs. Unfortunately, the difficulties
of defining a common notation for more complex problems
and knowledge led to the demise of a proposed HTN track.
A recent survey of advances in AI planning (Weld1999)
focused entirely on DP methods, reflecting the current em-
phasis on this style of planning.

We are interested in solving real-world planning prob-
lems, and believe that doing so will require techniques that
are more expressive and provide a wider range of capa-
bilities than DPs. In particular, we argue for the use of
knowledge-based planning(KBP)—that is, methods that
use available domain knowledge to solve the planning prob-
lem, including interacting with humans when necessary to
make use of their expertise. A planner may be more or less
knowledge-based, depending on the range of knowledge it
uses, and how effectively it uses it. We argue that KBP
can solve problems that DPs in their current form cannot,
because of the greater expressivity and more natural repre-
sentations of KBP.1

We present some characteristics of real-world palnning
problems that are not solvable by current DP approaches,
and we argue that DPs are unlikely to extend to these prob-
lems. We summarize the features of an HTN planner to
show the types of knowledge and capabilities that are ex-
ploited in an existing KBP system. However, current HTN
planners are only a small step in the direction of the level of
KBP that we envision. We next argue that achieving plan-
ful behavior in a complex, dynamic world will require the
use of much more knowledge and richer knowledge mod-
els than those used in HTN planners. We discuss forms of
knowledge that HTN planners do not use, and give some
examples of problems that today’s HTN planners are not
able to solve. Finally, we draw some lessons from the his-
tory of the machine learning research community that are
analogous to the current trends in the planning community.

Characteristics of
Real-World Planning Problems

Real-world problems have been found by many researchers
to require more expressive representations and capabilities
than those provided by current AI planning systems. Chien
et al. (1996) conclude from their experience with multiple
NASA applications that “current plan representations are

1Our comments apply not only to DPs, but to any planner that
cannot address hard, embedded problems, whether for computa-
tional reasons or a lack of expressiveness. We address our remarks
to DPs as they are currently the most studied systems with that
property.
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impoverished.” They discuss the requirements of an opera-
tional context in which users must interact with the system,
and must be able to understand and modify the plans pro-
duced by the planner. Our experience with military plan-
ning applications supports these conclusions. In this sec-
tion, we describe some of the specific capabilities that are
needed to solve real-world problems: numerical reason-
ing, parallelism, context-dependent effects, interaction with
users, execution monitoring, replanning, and scalability.

Reasoning with numbers is essential in every realistic do-
main that we have studied. Common needs for numbers
are time, sharable resources having a specific capacity, con-
tinuous resources available in limited quantities, and goals
of accumulation. In practice, DPs have difficulty handling
problems involving reasoning about numbers.2 In most ex-
isting non-HTN AI planners, the need for numerical rea-
soning is reduced by assuming that sharable resources have
infinite capacity, and that continuous resources are unlim-
ited (Srivastava & Kambhampati 1999).

Realistic domains may have dozens of (perhaps neces-
sarily) parallel activities, as activities of various agents are
coordinated. Parallelism can cause computational problems
for DPs, and many systems produce only sequential plans.

Realistic domains often have numerous context-
dependent effects, which can cause an exponential
explosion in the number of STRIPS operators needed. This
problem is being addressed to some extent in DPs. Ex-
tensions to the Graphplan algorithm to handle conditional
effects are given in (Kambhampati, Parker, & Lambrecht
1997) and (Gu´eré & Alami 1999), but neither paper
discusses the time or space complexity of the algorithms.
Other approaches have also been tried, perhaps the most
promising being factored expansion, in which an action
with conditional effects is split into new actions called
“components,” one foreach conditional effect. The cost
is added complexity in the planning algorithms involving
“tricky” extensions (Anderson, Smith, & Weld 1998).

Interacting with people is a critical aspect of real-world
planning. Realistic problems are embedded in the world,
and generally do not have precisely defined boundaries or
evaluation functions. Thus, most interesting planning prob-
lems will be difficult or impossible to model fully. For ex-
ample, criteria for plan evaluation often cannot be quanti-
fied, such as when the political consequences of a military
or media action are crucial. In such cases, a human user
must be able to guide the planner and evaluate the plans
produced, allowing the planning system to take advantage
of the user’s expertise

In the real world, the goal of planning is not simply to
build the plan, but to use it to control actions in the world.
Therefore, realistic planning systems must support execu-
tion monitoring and continuous plan modification during

2While simple, finite arithmetic could be added to DPs, the
combinatorics would generally explode. Another approach is
given by Wolfman and Weld (1999), who describe a system that
combines SATPLAN with an incremental Simplex algorithm for
solving linear inequalities. A useful extension, but combinatorics
allow solution of only toy problems.

execution. Because there is no dependency structure in DP
plans, monitoring them is difficult. In addition, the DP ap-
proach is very brittle in the face of changing problem re-
quirements, and any change in the environment may result
in the planning system having to start from scratch.

Finally, realistic problems involve enormous search
spaces, so scalability is essential. Vast strides have been
made in the size of problems solved by DPs, such as solving
instances with 1016 to 1019 configurations. However, these
large DP problems are still representations of toy problems,
such as a logistics problem with 9 packages, 5 trucks, 2 air-
planes, and 15 locations (Kautz & Selman 1998). Simply
increasing the number of locations to a realistic number will
make even these toy problems unsolvable. In contrast, HTN
planners can generate plans in domains with thousands of
objects and hundreds or thousands of actions.

Using Knowledge in HTN Planners
Hierarchical task network (HTN) planning is one exam-
ple of a KBP approach that is more knowledge-based than
DPs. It has been known for some time that HTN formalisms
are more expressive than the STRIPS formalism favored by
many DPs, roughly analogous to the additional expressivity
of context-free grammars over right-linear (regular) gram-
mars (Erol, Hendler, & Nau 1994).

HTNs naturally model the world in the same way that hu-
man users do in many domains, using the same abstractions.
This modeling approach enables users to control and under-
stand the planning process and the resulting plans. (Note,
however, that current HTN planners still leave much to be
desired in terms of interactive planning.) In contrast, the
DP approach models the planning problem as millions of
conjunctive normal form expressions, making it difficult for
users even to understand the planner’s reasoning process,
much less intervene to modify or guide it.

In this section, we describe some of the uses made of
domain knowledge in a particular HTN planner, SIPE–2.
These features may be candidates for extending non-HTN
planners. Kautz and Selman (1998) identify three kinds of
planning knowledge: knowledge about the domain, knowl-
edge about good plans, and explicit search-control knowl-
edge. In addition, HTN planners are also concerned with
other types of knowledge, such as knowledge about inter-
acting with the user, knowledge about a user’s preferences,
and knowledge about plan repair during execution. SIPE–2
has formalisms that allow encoding of these types of knowl-
edge, in either HTN operators (also known as methods or
schemas), advice, or other declarations.

It is sometimes argued that the knowledge used by HTN
planners is “simply search-control knowledge,” rather than
part of the problem statement. However, if the goal is
to solve realistic planning problems, then intelligent, prin-
cipled search control that takes advantage of knowledge
about the domain is precisely what is needed. This knowl-
edge can often be naturally and efficiently captured in HTN
operators, where much of the context is implicit and there-
fore need not be expressed or checked during each at-
tempted application.
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HTN Capabilities: SIPE-2
SIPE–2 (Wilkins 1990) is a domain-independent HTN
planner that uses more knowledge and has richer capa-
bilities (such as numerical constraints and resource mod-
els) than the current DPs. Example applications include
containing oil spills (Agosta & Wilkins 1996), planning
air campaigns for the Air Force (Wilkins & Myers 1998;
Lee & Wilkins 1996), and joint military operations plan-
ning (Wilkins & Desimone 1994). In the latter applica-
tions, the domain knowledge includes 100 to 200 opera-
tors, around 500 objects with 15 to 20 properties per object,
and a few thousand initial predicate instances. Plans can
include up to several hundred actions—several thousand if
all abstraction levels are counted—usually having numer-
ous parallel activities.

Expressiveness SIPE–2 provides a powerful approach to
representing and reasoning about planning problems that
makes it suitable for complex domains.

SIPE–2’s HTN operators are encoded at multipleab-
straction levels. The higher levels can model various solu-
tion methods. SIPE–2 operators candynamically generate
a set of goalsat planning time, a capability that has been
extensively used. For example, a defend goal can be gener-
ated for every currently known threat.Situation-dependent
effectsof actions are deduced by a causal theory. Such ef-
fects have proven their use in practice — without them, the
number of operators can grow exponentially in complex do-
mains.

SIPE–2 canreason about numbers, a capability crucial
in nearly all of our applications. For example, a planning
variable may be constrained to be a runway with a length
greater than some number, sharable resources have a spe-
cific capacity, and continuous resources are available in lim-
ited quantities. In many application domains, it is neces-
sary toaccumulate a certain quantityof some resource, or
achieve a certain level of effect, such as obtaining a suffi-
cient length of boom to surround an oil spill. Such goals
are not accomplished by a single action; rather, several ac-
tions contribute to the accumulation. Thus, SIPE–2 deter-
mines when a set of actions (that individually produce some
amount of the resource in question) together achieve an ac-
cumulation goal.

Temporal reasoningis important in many domains.
SIPE–2 has two different modes for reasoning about time.
The most general allows specification of any of the thirteen
Allen relations between any two nodes. The temporal con-
straints are solved separately from the other constraints by
passing them to Tachyon (Arthur & Stillman 1992).

Finally, calls can be made toarbitrary domain-specific
LISP code, for knowledge that cannot easily be modeled in
the HTN formalism, and for sophisticated numerical calcu-
lations. Functions on planning variables may compute an
instantiation (e.g., the duration of a flight) and procedural
attachment on predicates may compute whether a condition
is true.

User Interaction Because HTN plans and domain
knowledge can be complex, a powerful graphical user in-

terface (GUI) is essential. Without natural pictorial repre-
sentations of the knowledge and plans, it would be nearly
impossible for a human to understand them. SIPE–2 pro-
vides a GUI and a web server to aid in generating plans,
viewing complex plans as graphs, and following and con-
trolling the planning process.

SIPE–2 provides a flexible and powerful interactive plan-
ner. In our applications, this feature is critical because ex-
perienced human planners can guide the search effectively,
and are reluctant to give control to an automated system.
The user may interact with the planning process at many
different levels of detail, and may direct the planner to solve
certain parts of the problem automatically. Under interac-
tive control, the user can control (among other things) when
and how resources are allocated, which operators to select,
which goal to expand next, how to instantiate planning vari-
ables, and how to resolve conflicts.

The user can also control or influence the plan develop-
ment process using the Advisable Planner (Myers 1996).
Users can direct the planning process by providing high-
level guidance that influences the nature of the solutions
generated. Advice consists of task-specific properties of
both the desired solution and the problem-solving process
to be used for a particular problem.

Constraints and Efficiency A sort hierarchy represents
invariant object properties, describes the classes to which
an object belongs, and allows for inheritance of proper-
ties. The sort hierarchy encodes large amounts of knowl-
edge in our applications, and the planner can reason more
efficiently about this knowledge because it knows the rela-
tionships cannot change as actions are performed.

SIPE–2 uses the least-commitment approach to variable
binding. Constraints are placed on variables by domain
knowledge in the operators (e.g., a particular truck must
have a capacity greater than 100). Instantiations are not
chosen until sufficient constraints accumulate to identify
a unique acceptable value. Because uninstantiated vari-
ables increase computational complexity, domain-specific
knowledge can be used to specify when early instantiation
of variables can be done without adversely affecting solu-
tion quality (Myers & Wilkins 1998).

Predicates can be declared as functional in certain argu-
ments, allowing a dramatic speedup, which has been doc-
umented experimentally (Myers & Wilkins 1998). Func-
tional predicates are of particular importance to reasoning
about locations in planning systems, and have proven valu-
able in nearly every application of SIPE–2.

The system relies onplan critics that check for and cor-
rect conflicts in plans, reducing computational costs during
plan expansion. Examples of plan critics include the tem-
poral reasoner and checking constraints on planning vari-
ables. These critics are applied by default aftereachplan-
ning level, i.e., an expansion of the whole plan to a greater
level of detail, but the frequency can be increased or de-
creased as appropriate for the problem domain (Wilkins
1990).
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Knowledge Beyond HTN
Despite the power of HTN planning systems, and their
demonstrated ability to address real-world planning prob-
lems, they have limitations that make them inadequate for
many problems of interest. In particular, HTN planners:

� require complete (except for anticipated incompleteness)
and certain knowledge about the world

� model the effects of actions as deterministic, fully under-
stood outcomes

� assume that the planner controls all agents that cause
changes in the world state

� require significant effort in domain modeling and knowl-
edge acquisition for complex problems

� cannot perform or incorporate complex or decision-
theoretic evaluations of plan quality

� ignore the qualification problem

� use simplistic frame problem solutions that prevent draw-
ing the most appropriate conclusions when contradictory
(perceptual) information arrives (Pollock 1998)

� do not consider risks and utilities

� do not use knowledge and probabilities to handle uncer-
tainty

� are brittle (may not work if the problem changes
slightly).

These limitations are shared by the other major fami-
lies of planners (DPs and causal-link planners), although
some of them, such as handling uncertainty, are the sub-
ject of ongoing research (Boutilier, Dean, & Hanks 1999;
Majercik & Littman 1998; Smith & Weld 1998; Weld, An-
derson, & Smith 1999; Kushmerik, Hanks, & Weld 1994).

In addition to these limitations, planning systems that
could solve interesting problems in a complex, dynamic
world will need capabilities that represent a fundamental
shift in how we think about planning problems. An ideal
system would be able to behave like humans do in these
sort of environments; in particular, it would have to:

� exhibit creativity, devising new actions that can solve a
problem or shorten a plan

� use analogy to transfer solutions from other problems

� effectively interact with humans to use their knowledge
in decisions

� behave intelligently in the face of conflicting or incom-
plete information.

We believe that these capabilities will require more knowl-
edge, including background knowledge of other domains
and of how the world works. Evaluation criteria other than
correctness and plan length will have to be factored in ex-
plicitly. Also, interacting effectively with humans will be
essential because we will never model every possible issue
that might affect a planning decision.

Of course, not all interesting problems have these char-
acteristics, and in any given case, it may be possible to

formulate the problem in such a way as to remove the
need for these capabilities. For example, in develop-
ing the Burton planner (not a DP planner), Williams and
Nayak (1996) used a purely propositional representation.
However, it seems unlikely that all interesting problems will
be amenable to such an approach, and other NASA appli-
cations have required richer representations (Chienet al.
1996).

Knowledge in DP vs KBP
To impact realistic problems, we predict that DPs will have
to incorporate the types of knowledge used by HTN plan-
ners, as well as knowledge to overcome the limitations of
HTN approaches that we have discussed. It is encourag-
ing that this is already starting to occur. For example, there
is initial work on adding knowledge about temporal extent
of actions to SATPLAN encodings (Smith & Weld 1999),
and on encoding HTN method knowledge for satisfiability
solvers (Mali & Kambhampati 1998).

However, while HTN planners can generally make effec-
tive use of additional knowledge, the same is not necessar-
ily true of DPs. Additional knowledge encoded as axioms
may increase the size of the problem with redundant ax-
ioms, and make the problem harder to solve. Initial experi-
ments indicate that whether added knowledge helps or hurts
may depend on the particular combination of knowledge,
problem, and algorithm (Kautz & Selman 1998). For ex-
ample, the “point of diminishing returns from the addition
of axioms would be sooner reached for stochastic search
than for systematic search” (Kautz & Selman 1998). Thus,
the knowledge added to a DP may have to be carefully cho-
sen for the problem being solved and the algorithm being
used.

KBP approaches are rightly criticized for the expense
of modeling a new domain. However, we conjecture that
building computationally efficient encodings for DPs of
complex planning domains is no easier than building HTN
models. Many encoding issues are still under study, even
for toy domains (Kautz & Selman 1999; Brafman 1999;
Mali & Kambhampati 1998).

Lessons from Machine Learning
In every research community, there is an ongoing tension
between well defined and more ambitious problems. On the
one hand, if a field focuses on small, well understood prob-
lems, with well defined algorithmic properties and evalu-
ation metrics, then a set of benchmark problems can be
formulated to facilitate formal and empirical analysis and
comparison of competing methods. On the other hand,
many of the interesting challenges posed by realistic ap-
plications have broader implications and less well under-
stood properties, and the problems are more difficult to de-
fine crisply and to evaluate.

Several years back, the machine learning community es-
tablished a repository of benchmark problems to evaluate
machine learning systems. Naturally, these problems all
had commonalities: most used an attribute-vector represen-
tation; most consisted of “sets of instances” with no back-
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ground knowledge. In practice, they could be used only to
evaluate predictive accuracy on propositional, supervised
learning algorithms. Despite these limitations, however, it
became the de facto standard that papers submitted to the
International Conference on Machine Learning (ICML) had
to include an evaluation on these benchmark problems.

In some ways, this set of benchmarks, and the emphasis
on evaluation, were good for the community: they forced
researchers to think about metrics and about comparing
their systems to other systems, and they provided a base-
line of performance that researchers could test new ideas
against. On the other hand, they tended to stifle research
that didn’t fit neatly into the problem space defined by the
benchmark problems. Applications-orientedresearchers re-
ported that it was difficult or impossible to get their papers
accepted to the leading ML conferences (Provost & Kohavi
1998). Meanwhile, more and more papers appeared show-
ing minor tweaks and incremental improvements to exist-
ing algorithms (but they showed “statistically significant”
improvements on the benchmark algorithms!)

As a result, there are now many well understood and ef-
fective methods for propositional supervised learning—and
there has been much less progress in other areas of ma-
chine learning, such as incorporating background knowl-
edge, feature engineering, relational learning, interactive
learning techniques, visualization of learned knowledge,
and complex evaluation criteria.

Most recently, there has been an explosion of interest
in learning Bayes nets. Bayes net learning and inference
techniques have appealing computational properties that are
analogous to those of DP approaches: they efficiently cap-
ture certain types of problem structure, and significantly
speed up certain types of inference over previous meth-
ods. However, like DP approaches, they use a propositional
representation, and do not address many of the other chal-
lenges posed by realistic learning problems. As with DP
approaches, the rush of enthusiasm over Bayes net tech-
niques has threatened to overshadow the fact that despite
their computationally attractive properties, they still solve
only a small subproblem within the overall field of machine
learning.

Similarly, in the planning community, there is a danger
that by focusing too much attention and effort on DP meth-
ods and the problems they solve, we risk losing the ability
to recognize other kinds of contributions and advances. In
particular, if the benchmark of performance becomes solely
how many blocks our planners can stack, and how fast they
can do it, then it will become increasingly difficult to rec-
ognize and learn from research that performs well along
other dimensions—or that addresses problems that DP sys-
tems overlook completely. As we discussed earlier, DP
researchers within the planning community are starting to
look towards extending their systems to incorporate richer
forms of knowledge. This is a trend that we applaud, and
that we hope will continue, but it is not enough to simply
broaden the uses of DP systems: we need to be open to
completely different approaches and paradigms as well.

While improving the speed of solving problems we know

how to formulate precisely is a valuable research activity,
so is continuing to investigate problems that we don’t yet
have a good handle on formulating or solving. Results may
be more difficult to achieve or quantify for these the “hard
problems,” but that doesn’t mean we shouldn’t be working
on them.

Conclusion
Ginsberg (1996) has pointed out that the SATPLAN ap-
proach is successful because it solves the “puzzle” part of
a problem, and overlooks any commonsense reasoning as-
pects of the true problem. In Ginsberg’s view, common-
sense reasoning is the heuristic process by which we re-
duce extremely complex problems to NP-hard or simpler
problems for which search is feasible. Which aspects of a
problem to pay attention to, frame and context assumptions,
and default strategies for organizing complex activities are
all aspects of commonsense reasoning. As Ginsberg puts
it, “It is Kautz and Selman who are solving the common-
sense aspects of the problem; their ‘planner’ is solving the
puzzle-mode kernel of the problem instead of the problem
itself.” Indeed, the problems solved by DP approaches are
almost exclusively puzzle-style problems (or “real-world”
problems that have been reformulated as puzzles).

We favor using DP to solve puzzle-style subproblems
that can be represented as satisfiability problems and solved
in acceptable time. DP may well be the appropriate method
for those aspects of the overall problem. However, AI plan-
ners also need to provide support for the commonsense rea-
soning aspects of the problem so that plans can be used
to guide planful behavior while embedded in a complex,
dynamic environment. We have argued that incorporating
knowledge into the planning process is the most promising
way to provide these abilities.

Although DP methods are clearly useful approaches for
solving certain subproblems, it is important for the field as
a whole to continue to look at a wider range of problems.
There is a danger of allowing the current popularity of DP
approaches, and the associated evaluation techniques and
“puzzle-style” problem suite, to overly influence the field,
making it more difficult for advanced KBP methods to find
an audience.
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Abstract 

The term “customer” in the title refers to the payload 
developers; they are the real users of a space vehicle, 
after all.  The answer to the question lies in the ability 
to design and deploy a system that allows multiple si-
multaneous users to schedule activities that require 
shared resources.  In addition, the system must be de-
signed so that it can easily be used by a community 
whose members, while being experts in their payloads, 
know little or nothing about scheduling.  An effort is 
underway at Marshall Space Flight Center to demon-
strate the feasibility of allowing users to schedule their 
own payloads.  A web-based request-oriented schedul-
ing engine and the infrastructure to support it are 
being investigated.  This system will allow multiple 
users, each at a personal computer with a web 
browser, to formulate scheduling requests and submit 
the requests for immediate automatic scheduling.   

Introduction 
Scheduling payload operations has historically been done by 
a cadre of mission planners who act as agents for the payload 
developers.  The members of this cadre are experts in the 
features, capabilities, limitations, and language of the sched-
uling engine.  Different members of the cadre have different 
scientific and technical backgrounds; they are usually 
matched to the payload they represent.  The members be-
come experts in the payload that they represent – often with 
the help of extended input from the payload developers.   
 The process of collecting requirements is often protracted 
with multiple iterations.  The payload developer submits pay-
load requirements and descriptions in the requested format.  
A cadre member reviews the information and contacts the 
payload developer for a better understanding.  The payload 
developer modifies his submission.  
 After the cadre has an adequate (in-depth) understanding 
of the requirements, the cadre members use the scheduler to 
produce a timeline.  The payload developers review the time-
line, make comments, and the cadre makes repairs to the 
timeline.  Usually, several months elapse between the re-
quirements submittal and the completion and publication of 
the timeline. 
 The scheduler currently used for the International Space 
Station payloads requires expertise to represent the payload 
requirements.  The lack of several key features causes the 
cadre to spend a great deal of time describing a payload’s 

actual scheduling requirements in the “vernacular” of the 
scheduler, and then to hand build the timeline with a manual 
timeline editor to get the desired results.  The scheduler can-
not represent or process optional sequences of operations 
(multiple scenarios), choice of constraints within a non-
homogeneous group, soft (fuzzy) requirements, or resource 
lock-in across sequential tasks.  Furthermore, the current 
scheduler only supports one cadre member at a time, so the 
cadre members must either take turns or funnel all scheduling 
through one member. 
 If a scheduling system existed that allowed payload de-
velopers to schedule their own payloads, a better timeline 
could be produced in less time with fewer cadre members 
supporting the system.  The delay between describing and 
submitting a scheduling request and viewing the results 
would be reduced to minutes rather than months.  The pay-
load developers could then refine and resubmit their 
requirements until they got a satisfactory timeline.  The cadre 
would only have to preload the scheduling engine with the 
envelopes and allocation constraints, define the station and 
payload equipment resource requirements, and post-check 
that the timeline is safe and meets programmatic constraints. 
   ROSE  The Mission Support Systems Group at MSFC has 
embarked on an effort to design and demonstrate (and possi-
bly deploy) a system that ameliorates many of the 
shortcomings of the current system by allowing the payload 
developers to schedule their own payload activities.  It in-
cludes a graphics-based method for formulating scheduling 
requests and a centrally located, multi-user Request-Oriented 
Scheduling Engine (ROSE) working against one current set 
of resource availabilities and one current timeline.  The sys-
tem uses the World Wide Web to allow the user community 
(the payload developers – the customers) to readily access 
the system from a personal computer or workstation.  The 
name ROSE is being applied to both the project as a whole 
and to the scheduling engine itself. 

Web-Based Architecture 
ROSE is a web-based application.  The users access the sys-
tem via the World Wide Web; no ROSE-specific software is 
installed on a user’s computer and no data is stored on a 
user’s computer.  The user navigates via a web browser to 
the ROSE web site, logs on, and proceeds to formulate 
scheduling requests and submit them for scheduling.  The 
user can also review the in-work timeline, delete tasks from 
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the timeline, and view ancillary information such as resource 
allocations and envelopes.  An overview of the ROSE archi-
tecture is shown in Figure 1. 
 A web-based system is ideal for the payload developers.  
Maintenance is literally zero.  Opening the web page with a 
browser will download and execute the latest version of the 
client without any effort on the user’s part.  The user can 
switch between client computers in his office, home, or even 
use a portable without installing ROSE-specific software or 
moving any files.  Security is the only concern, and security 
is being integrated into the ROSE research and development 
effort so that an adequate solution can be deployed. 
   Implementation  The user of ROSE initiates a “web ses-
sion” by opening a web page on a remote web server.  The 
web server is Microsoft’s Internet Information Server (IIS) 
running on a Windows NT/2000 server.  The web page 
downloads and runs a Java applet.  Logon is handled by the 
Java applet; the web session is managed by IIS via Active 
Server Pages (ASP) and a global.asa file.  All communication 
with the Java applet, including access to the database, is fa-
cilitated by a set of ASPs written in Visual Basic Script.  
Sessions are terminated when the user goes to another web 
page or exits the browser, when the server does not receive 
communication from the client for an extended period of 
time, or when the client or the server is restarted.  The client 
automatically initiates a new session, without user interven-
tion, when needed.  The session manager, which handles 
locking of the data in the database, prevents an account from 
having more than one active session.  This implementation 
does not require a continuous connection between the client 
and the server.  It even allows the client computer to be dis-
connected from the network for an extended period without 
loss of cached data or edits.  

Modeling – The Critical Element 
Modeling in the context of activity scheduling has histori-
cally meant defining an activity’s requirements for shared 
resources (power, crew, etc.), time-dependent constraints 
(when the vehicle is within view of a target), and sequencing 
of activities relative to each other (warm-up before data-take 
before shutdown).  In the context of ROSE, modeling is also 
called “request formulation,” because a model is the core of a 

scheduling request. 
 Modeling is the process of representing the requirements 
in a manner usable by the scheduling engine so that it can 
produce a correct and acceptable timeline.  Modeling always 
requires an in-depth understanding of the payload and how 
the scheduling engine behaves.  In the current operations 
concept, a payload developer provides an in-depth descrip-
tion of the payload to the group, called the scheduling cadre, 
which builds the models and eventually runs the scheduler.  
After several extended dialogs with the payload developer, 
the cadre builds the models for the payload, produces a time-
line, and presents it to the payload developer for review.  The 
payload developer reviews the timeline and requests changes; 
the cadre tweaks the models and (after sufficient iteration 
with the payload developer) produces an acceptable timeline. 
 If payload developers, who already have expertise in the 
payloads, are to formulate scheduling requests and submit 
them to a scheduling engine, they must have expertise in the 
scheduling engine – this is critical.  Being an expert in the 
behavior of the scheduling engine means knowing how the 
engine will react to a given model, and how to build a model 
to achieve the desired results.  ROSE will make the payload 
developers virtual experts in using the scheduling engine by 
making them experts in modeling.  ROSE uses a request 
format that is a natural representation of the requirements 
without adding artificial constraints or constructs.  We call 
this modeling methodology high-fidelity or hi-fi modeling – 
the model looks like the real world payload and the engine 
interprets the model as expected.  ROSE provides immediate 
feedback (when a request is submitted, the resulting timeline 
is available immediately), thereby exposing users to the 
workings of the scheduling engine.  After only a few submit-
tals, the users will know what to expect from the engine 
when a request is submitted; i.e., they will become virtual 
experts. 
 In addition to supporting “hi-fi” models, ROSE provides 
a user-friendly interface that is neither laborious nor time 
consuming and which requires little or no training.  The user 
interface of ROSE is the same as that of the Interim User’s 
Requirements Collection (iURC) system currently being used 
to collect payload scheduling requirements for at least the 
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Figure 1.  ROSE Architecture Overview 

194          2nd NASA International Workshop on Planning and Scheduling for Space



first four increments of the International Space Station.  This 
interface is described in a previous paper (Jaap, Davis & 
Meyer, 1997) and in the on-line user’s manual for iURC.  
The modeling process itself employs graphical methods to 
describe activities and sequences.  The user is presented with 

a canvas to which items are added and arranged in a hierar-
chy (for activities) or in a network (for sequences).  Details 
of the requirements are entered via dialog boxes.  The advan-
tages of using a graphics method are best illustrated by 
example.  In the typical International Space Station sequence 
shown in Figure 2, the temporal relationships marked with an 
F are "follows" relationships, those marked with a D are "dur-
ing," and those marked with an A are "avoid."  The sequence 
indicates that ACE_setup is followed by ACE_deployed, which 
is followed by ACE_stow; during ACE_deployed, ACE_H2S, 
ACE_passive, and ACE_exercise are done, but while avoiding 
one another.  ACE_H2S, ACE_passive, and ACE_exercise are 
themselves sequences.  This example is a simple sequence; 
International Space Station users frequently submit se-
quences with twenty or more tasks and many relationships, 
including some to station tasks like reboost and shut-
tle_docking.  The graphics representation is understandable 
even when extended to large and complex sequences.  The 
modeling methodology supports optional arrangements of 
tasks within the sequence (sequence scenarios), soft require-
ments, and choice of constraints within a group with lock-in 
across sequence members. 
   Implementation  The Java applet provides both request 
formulation (modeling) and request submittal.  Models are 
stored in Microsoft’s SQL Server database hosted on a com-
puter at the site of the web server.  When the user selects a 
model or a portion thereof for editing, it is downloaded from 
the database via the web server (shown on left side of Figure 
3).  Edits to the models are posted to the database via the web 
server whenever the user selects a different activity or se-
quence, submits a scheduling request, or makes an explicit 
request to save the data.   When posting updates, database 
stored procedures are used (shown on right side of Figure 3). 
 A model is pre-checked for errors before it is submitted to 
the scheduling engine; or a user can request a pre-check at 
any time.  When a sequence is pre-checked, all the refer-
enced sub-sequences and activities are also checked.  

Checking is done on the web server computer by an ISAPI 
(Information Server Application Programming Interface) 

extension to IIS (shown in Figure 4).  The ISAPI is written in 
C++.  Since the ISAPI is multithreaded, one instance services 
multiple simultaneous users.  A separate database connection 
is made for each pre-check request.   
 There is no explicit configuration control of the user’s 
models.  A user can always edit his models.  However, when 
a model is added to the timeline (scheduled), an instance of 

that model is saved with the timeline and never edited.  Thus, 
editing a model does not edit what is already scheduled, and 
configuration control of users’ models is not required. 
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Scheduling 
While the scheduling engine is the key element of the sys-
tem, the user should not need to know how it works – the 
user needs only to hone his modeling skills.  The scheduling 
engine must understand the “language” of modeling perfectly 
and should behave exactly as expected.  Moreover, the 
scheduling engine must provide feedback (reports for suc-
cesses and explanation for failures) to help the user improve 
his modeling skills.  To be useful, the ROSE system as a 
whole must respond to scheduling requests from each of its 
multiple users in only a few minutes. 

 In ROSE, each scheduling request initiates an attempt to 
schedule one performance of one sequence that may have 
embedded sub-sequences, repeated tasks, and multiple sce-
narios.  The scheduling request is primarily the data in the 
model, but the user can override or add additional constraints 
such as a scheduling window, starting time frame, and sce-
nario specification. 
 Due to the nature of ROSE, some characteristics of the 
scheduling engine are compulsory.  It must handle the mod-
els.  It must respond quickly.  Everything it schedules must 
be “valid;” i.e., resources are never oversubscribed and con-
straints are never violated.  Once something is in the 
timeline, only the user can remove it; the scheduling engine 
doesn’t adjust one task to fit another task into the timeline.  It 
must constrain each account so that its resource allocations 

are not exceeded.  Furthermore, ROSE must not lose any-
one’s scheduled tasks if the scheduling engine or the 
computer crashes – scheduled tasks are committed to the 
database immediately after scheduling 
   Implementation  The Java applet provides the user inter-
face for submitting a sequence to the scheduling engine.  
When the schedule button is clicked, the model is saved to 
the database via the web server and is then pre-checked for 
errors.  If the model has no errors, a dialog box permitting 
the user to make selected model overrides is presented.  
When the user completes the dialog, the request is sent to an 
ASP on the web server.  The ASP passes the request to an 
ISAPI that forwards it to the scheduling queue.  Only a single 
instance of the multi-threaded ISAPI runs on the web server; 
it funnels scheduling requests from all users into the head of 
a communications pipeline to the scheduling queue at the 
front end of the scheduling engine.  After a request is queued, 
the applet regularly polls the scheduling engine, via an ASP 
and an ISAPI, to get the status of the request. 
 The scheduling engine is a Windows NT/2000 “service” 
with a control console for setup.  The scheduling engine ac-
cesses the model, allocation, and timeline databases to 
determine when, in the timeline, to schedule the request.  
When the request is scheduled, a report is written on a local 
file in html format.  If the request cannot be scheduled, an 
explanation is written on a local file in html format.  The 
request is now satisfied, the entry is cleared from the queue 
and processing begins for another request.  A summary of the 
results is returned to the applet when it next polls the status. 
 Upon receiving the notice of completion, the Java applet 
sends a directive to the user’s web browser to display the 
report.  For successful requests, the report web page contains 
a form that is preloaded with the request to delete what was 
just scheduled.  Figure 5 shows the main information flow 
for a scheduling request. 
 When a request is scheduled, a copy of the model is 
stored with the timeline, thus allowing the user to continue 
editing the model without limitations. 

Inspecting the Timeline 
   Implementation  A web-page form provides the user inter-
face to request a display of timeline segments.  The user can 
specify the start and stop times of the report and that only the 
user’s data should be included.  The request is sent to an ASP 
that converts it to a SQL statement that is sent to the data-
base.  The resulting record set is reformatted into an html 
page by the ASP and returned to the web browser.   Figure 6 
shows the flow of information when inspecting the timeline. 
 By the time ROSE is deployed, inspection may be based 
on XML (extensible markup language), with the ASP return-
ing XML data and an XML control in the web browser 
handling the display of data.  Using XML will provide client-
side control of what is displayed, thereby significantly in-
creasing the responsiveness of timeline inspection and 
reducing the processing load on the web server and the data-
base.   

JAVA 
Applet 

ASP 
(VBScript) 

Request 

Request 

(on completion)  

Models 

D
a

ta
b

a
se

 
W

e
b

 S
e

rv
e

r 
C

lie
n

t 

ISAPI 

Report 

Web 
Browser 

Http File 
Contents 

Status 

Ftp 
“get” 

Timeline 

Queue & 
Scheduling 

Engine 

Report 

Status 
polling 

Figure 5.  Scheduling Flow 

196          2nd NASA International Workshop on Planning and Scheduling for Space



Deleting from the Timeline 
   Implementation  The timeline inspection web page pro-
vides the user interface for deleting tasks from the timeline.  
The user selects a sequence performance to delete and sends 
the request to an ASP on the web server.  The ASP forwards 
the request to the same ISAPI that handles scheduling re-
quests.  The deletion request is put into the scheduling queue 
for processing by the scheduling engine; deletion requests are 
processed before scheduling requests. Figure 7 shows the 
flow of information when deleting from the timeline. 

Manual Editing of a Timeline 
The ROSE architecture does not support true manual editing 
of a timeline by remote users.  A simulation of timeline edit-
ing can be accomplished by adding a command to reschedule 
(delete a specified sequence performance and schedule a per-
formance of a sequence), with its supporting user interface.  
If the requested sequence could not be scheduled, the original 
sequence performance would be restored. 

Other Applications 
   Replacement for Current Scheduler  ROSE could be 
used as a replacement for the current scheduler with signifi-
cant benefit.  It would eliminate several of the shortcomings 
of the current scheduler.  However, this approach does not 
make the payload developers experts in modeling because it 
does not provide the necessary immediate feedback.  The 
scheduling expertise still exists only in the cadre, and they 
still have to become near-experts on the payloads they 
schedule.  This shortcoming could be overcome by allowing 
the payload developers limited access to ROSE. 
   Standalone What-If Scheduler  Payload developers could 
use ROSE to do “what-if” scheduling.  If ROSE were also 
the scheduler used by the scheduling cadre, then payload 
developers could become modeling experts; and, by provid-
ing usable models, eliminate the requirement for the 
scheduling cadre to become experts on the payloads. 
   Job-Jar Scheduler  ROSE could fill the need to have a 
scheduler that allows the crew of the International Space 

Station to schedule the “job-jar tasks.”  These are tasks that 
have been defined by payload developers, but not scheduled; 
instead, they have been put into a collection of tasks that the 
crew can do at their discretion.  Currently, only tasks that do 
not utilize shared resources (other than crew) are candidates 
for the job jar because there is no way for the crew to know 
payload resources requirements and timeline availabilities.  
ROSE could easily fulfill the requirements of a job-jar 
scheduler. 

Summary 
Can payload developers schedule their own payload activi-
ties?  The answer is YES.  A system is being designed and 
demonstrated that will provide all the necessary features to 
support this new approach to payload operations.  The key is 
high-fidelity modeling and a scheduling engine that can 
schedule the models.  The modeling challenge has been met, 
and the solution is operational in iURC.   Feedback from the 
payload developers using iURC indicates that this modeling 
approach meets the objective of being able to represent even 
complex requirements in a straightforward, easy-to-use man-
ner.  The World Wide Web provides the needed remote 
access so that the payload developer community can access 
ROSE with ease.  Standard web software languages and 
packages provide or enable most of needed features of 
ROSE. 
   Status of Research  The ROSE project is a research and 
development effort to investigate and demonstrate a system 
that addresses all technical issues necessary to allow payload 
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developers to schedule their own payloads.  To date, exten-
sive work has been done on the critical element of modeling 
and it has been put into operation via iURC.  The system 
architecture has been designed and demonstrated.  A proto-
type of the scheduling engine has been developed, but it 
needs some rework to exactly match the modeling.  Security 
issues are being investigated, but features such as firewalls 
are standard fare and will not be demonstrated.  An end-to-
end demonstration with a stubbed-out scheduling engine has 
been done. 
   Security  Security of the ROSE architecture is a major 
concern.  ROSE is a web-based system that directly affects 
spacecraft on-board operations.  Therefore, security remedia-
tion has been integrated into the research from the beginning.  
Since ROSE may become a reality, it is not wise to reveal the 
tailored safeguards which are being developed.  However, 
some of the standard safeguards that might be included are 
firewalls, perimeter security of the host computers, stringent 
password rules, challenge-response recognition of users, cli-
ent computer certificates, address recognition of client 
computers, and secure socket layer communication.   
   Paradigm Shift  Letting payload developers schedule their 
own payload activities is a paradigm shift for NASA.  While 
it is clear that the ROSE approach will provide better cus-
tomer satisfaction and that cost savings could be realized, a 
solution to the programmatic issues has not been embraced.  
How will the success of the mission be ensured?  How will 
NASA ensure that the operations are safe, that they meet 
international and other agreements, that the timeline will be 
acceptable to all parties, and that scare resources will be 
shared equitably?  A paper is being prepared which addresses 
these questions  (Jaap & Muery, 2000). 
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Abstract

Earlier work on autonomous systems has demon-
strated that schedules in the form of simple temporal
networks, with intervals of values for possible event-
times, can be made \dispatchable", i.e., executable
incrementally in real time with guarantees against fail-
ure due to unfortunate event-time selections. In this
work we show how dispatchability can be extended to
networks that include constraints for consumable re-
sources. We �rst determine conditions under which a
component of the network composed of resource con-
straints associated with a single sequence of activities
that use a resource (\bout") will support dispatcha-
bility. Then we show how to handle interactions be-
tween resource and temporal subnetworks to insure
dispatchability and how to handle sequences of bouts
interspersed with resource release. The results show
that exible handling of resource use can be safely
extended to the execution layer for more e�ective de-
ployment of consumable resources.

Introduction.
From both an intellectual and practical standpoint, the
development of autonomous systems that can schedule
their own operations is one of the most important ar-
eas of contemporary arti�cial intelligence. In this do-
main a de facto standard appears to have emerged, in
which the overall task of plan creation and execution
is apportioned to two distinct components, or \layers"
of the system, a high-level Planner-Scheduler and a
lower-level Executive. The Planner creates a plan to-
gether with an associated schedule of operations. This
schedule is passed to the Executive, which carries it
out by initiating execution of physical components of
the system at designated times.
In the Remote Agent planning system developed at

NASA-Ames and currently deployed for experimental
testing in the Deep Space 1 spacecraft, the Executive
is given certain leeway in selecting times for scheduled
operations. This is necessary to adjust the schedule

�Carried out in association with NASA-Ames Research
Center, Mo�et Field, CA and supported in part by NSF
Grant No. IRI-9504316. A version of this paper will appear
in the AIPS-2000 Proceedings.

to the actual conditions of execution. For example,
failure of a rocket engine to �re immediately could
break a schedule that did not allow some slack in ac-
tivity times. This is done by sending time bounds for
each event to be scheduled and allowing the Executive
to choose a speci�c time within each pair of bounds
(Mus94) (MNP98).

Because the Executive acts in real time, the con-
straints on its operation are severe. In particular,
during the instantiation of a schedule the Executive
cannot a�ord to backtrack, i.e. it cannot reschedule
earlier activities whenever its previous decisions have
caused it to reach a point where there are no options (a
`dead end'), because these earlier activities may have
already begun. For this reason, when actual plan ex-
ecution begins there must be guarantees that a sched-
ule derived from the time-envelopes is executable in-
crementally or \dispatchable". That is to say, regard-
less of the event times that are selected by the Exec-
utive, the result must be a viable schedule. In recent
work it has been shown that consistent temporal con-
straint networks, which are a basic component of the
Planner-Scheduler's output, can be made dispatchable
(MMT98).

At present, exibility of execution can only be pro-
vided with respect to temporal constraints. One would
like to provide this exibility for resource use as well,
with similar guarantees. In the present work we ex-
tend the notion of dispatchability to networks that in-
clude constraints for consumable resources in addition
to temporal constraints. An example of the kind of re-
source we are concerned with is the solid state recorder
that is used in spacecraft to store data from recording
devices prior to transmitting it to earth. In this case
there is a series of activities involving data storage (re-
source use), punctuated at intervals by activities in
which data is transmitted, thus freeing storage space
(resource release). Here, the problem is to insure that
resource capacity is not exceeded regardless of the start
and end times that are chosen for these activities dur-
ing plan execution.

As would be expected, establishing dispatchability
for the resulting simple temporal plus consumable re-
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source network (STN-cRN) is less straightforward than
the analagous problem for the STN alone. We han-
dle this problem through a series of decomposition
strategies. Speci�cally, we establish conditions for dis-
patchability that pertain to the cRN alone, then for
e�ects of each component on the other (STN!RN
and RN!STN interactions), and �nally for successive
`bouts' of activities that use the resource, that are sep-
arated by instances of resource release.
In Section 2 we describe the STN-cRN. Section 3

discusses conditions for dispatchability involving the
cRN. Section 4 discusses how to insure dispatchability
for an STN-cRN network, despite possible interactions
between the STN and RN. Section 5 extends the anal-
ysis to successive bouts of resource use. Section 6 gives
conclusions.

A temporal-consumable-resource
network

In the present Remote Agent scheduling system, the
Executive receives an envelope of acceptable schedul-
ing times in the form of an STN (Figure 1). The key
feature of such networks is that each event is associated
with a single interval. This insures that the network
is tractable, since it can be transformed into a digraph
and solved with shortest path algorithms (DMP91).
That the STN in Figure 1 is not dispatchable can be

shown by a simple example. As in the original work by
(MMT98), we assume that during execution an event
x is selected from a pool of candidate events whose
antecedents have already been instantiated, and that
the current time is now within the interval bounded by
the earliest and latest possible times for events in this
candidate set. In addition, constraint propagation can
take place after an event has been given a speci�c time
of occurrence, and is restricted to adjacent nodes in
the network. In the following example, instantiations
are shown on the left and results of propagation on
the right, in terms of the acceptable interval for events
whose nodes are adjacent in the constraint graph.

a = 0 b = 4-9, c = 4-6
b = 5 d = 7� 9
c = 6 e = 10� 13
d = 7 f = 14� 17
e = 13 g = 18� 23
f = 17 g = ?

Here, legal assignments to d and e propagate to f and
g, respectively, producing non-overlapping intervals for
their domains, which causes execution to fail when the
constraint specifying equality of the times for these
latter events becomes active.
Figure 2 shows a dispatchable network derived from

the STN of Figure 1. Inspection of the �gure shows
that an added explicit constraint between d and e pre-
vents e from taking the value of 13 if d is given the
value 7, as in our example. (For formal arguments

that such a network is always dispatchable, the reader
is referred to (MMT98).)
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Figure 1: A consistent simple temporal network.

Resource constraints are incorporated into the data
structure sent to the Executive via a separate subgraph
with di�erent characteristics (the cRN). In this case,
intervals represent bounds on resource use for a given
activity. For example, in Figure 3 each interval, [10,20],
represents a range of possible use of a resource between
10 and 20 units. In addition, k-ary constraints between
endpoints prevent the resource capacity from being ex-
ceeded. In the present example, the capacity is 30 re-
source units, and the sum of the upper bounds exceeds
capacity by 10 units. Therefore, if activity x starts
before y, and if the duration stipulated for the former
activity results in its using more than 10 resource units,
then the upper bound of y must be reduced by the ex-
cess amount to satisfy the constraint between x and
y.
In the full data structure, cRN nodes are linked to

STN nodes that correspond to the same activity (Fig-
ure 4). Resource use is assumed to be a nondecreasing
function of time, and here we assume a linear relation,
speci�cally, multiplication of the temporal bounds by
a positive or negative quantity for resource use and re-
lease, respectively. Of importance is the fact that the
mapping from STN event to associated resource use
is bijective, i.e., one-to-one and onto, and monotonic.
The linkage between STN and cRN is indicated by the
dashed lines in Figure 4, each labeled with its constant
of proportionality.
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Figure 2: The temporal network of Figure 1 made dis-
patchable.

Both here and in what follows, we focus on a single
consumable resource. If there is more than one such
resource, then each is associated with a separate cRN,
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and each member of the set of cRNs is connected to
the STN as shown in Figure 4.
Before beginning the discussion of dispatchability of

the composite network, it is important to note that
the tractability of this network as a constraint satis-
faction problem is not in question. This is because all
constraints in both the temporal and consumable re-
source subnetworks are in the same tractability class,
which (JCG95) refer to as Class 2 (constraints closed
under binary operations that are associative, commu-
tative, and idempotent).

n nx

n ny

-
[10,20]

-[10,20]

�
��y � 30 - x

Figure 3: A consumable resource network.

Making the cRN support
dispatchability.

If activities can either consume or release a given re-
source, then the entire sequence of such activities can
be divided into `bouts' of resource use separated by
instances of release. In the next two sections we will
con�ne our attention to a single bout of resource use
and its associated cRN, and conditions for dispatcha-
bility will be speci�ed within this context. In a later
section we show that the conditions for dispatchabil-
ity discovered for a single bout can be extended in a
straightforward way to an entire sequence of activities.
To support dispatchability, a cRN must allow any

sequence of instantiations to be made in the `mother'
STN without resource capacity being exceeded. Given
the bijective mapping from STN event to resource use,
this implies that any choice of value for an instance of
resource use must allow some values to be chosen for
all future (uninstantiated) variables. We refer to this
loosely as \cRN dispatchability".
For a single bout, the simplest su�cient condition

for cRN dispatchability is that the sum of the upper
bounds on resource use be less than or equal to the
initial resource capacity,

kX

i=1

ubi � Cinit (1)

Obviously, in this case the Executive does not need to
process the cRN at all, since whatever values it selects
from the STN, the resulting resource use will be within
capacity.
Unfortunately, this simple condition (that we will

call condition (i)) puts limitations on the range of
choices that can be given to the Executive. This can be
seen in Figure 3, where the sum of upper bounds (40)

is well above the capacity (30). Nonetheless, the cRN
in this �gure is dispatchable, because for every value
of resource usage chosen for activity X there is a us-
age value for activity Y within the designated bounds.
Here, dispatchability obviously depends on the con-
straint between x and y. This suggests a weaker con-
dition for dispatchability that at the same time allows
more exibility in the initial upper bounds on resource
use by single activities.
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Figure 4: Combined temporal-and-consumable-
resource network, in which intervals for duration
(STN) and resource use (cRN) associated with the
same activity are linked together. Such links are in-
dicated by dashed lines; the linked intervals are those
associated with arcs directed toward the nodes of ori-
gin and destination for the cross-links. For example,
activity x in the cRN is associated with arc (b,d) in
the STN.

For a set of k activities that use a given resource,
this condition (termed condtion (ii)) can be stated as
follows. For all subsets of k�1 activities, the di�erence
between the initial resource capacity and the sum of
the upper bounds of usage for these activities is greater
or equal to the lower bound of usage for the remaining
kth activity. Putting this in a form corresponding to
the �rst inequation,

k�1X

i=1

ubi + lbk � Cinit (2)

That the time complexity for determining whether
this condition holds is no greater than that required
for the �rst condition is shown by the following argu-
ment. There are O(k) subsets of size k � 1, and these
can be generated in sequence by swapping single ac-
tivities in and out, and respective sums after the �rst
can be generated by single additions and subtractions.
This indicates that dispatchability in this sense can be
determined for a set of k activities in O(k) time. (Note
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also that this processing will be done during the plan-
ning phase, where time constraints are not as severe.)
Adjusting upper bounds when we �nd that the dis-

patchability condition is violated also appears to be
easy, at least under some conditions. Thus, if the sum
for one of the subsets is � the capacity, then the upper
bound that does not appear in the sum can be reduced
to insure dispatchability. The amount it must be re-
duced is equal to a di�erence of di�erences. Suppose a
is the element in question, i.e. the activity whose lower
bound is in the sum that is � the limit. And suppose
that b is the element whose lower bound is in the sum
that exceeds the limit by the greatest amount. Viz,

k�2X

i=1

ubi + ubb + lba � Cinit

and
k�2X

i=1

ubi + uba + lbb > Cinit

Then the upper bound of a can be reduced by the
following amount to insure dispatchability for this set:

(ua � la) � (ub � lb) (3)

Since (ua � la) must be greater than (ub � lb), we know
that this di�erence must be positive, and obviously
it is � the original di�erence between ua and la. If
there is no sum less than the limit, it is su�cient to
choose a sum, reduce one or more upper bounds until
the condition in equation (3) is met, and then use the
above procedure.
This condition appears to be the weakest one pos-

sible that is still practical. Consider the next weakest
condition,

k�2X

i=1

ubi + lbk�1 + lbk � Cinit (4)

To insure dispatchability in this case, one must check
k(k � 1) subsets of k � 2 activities. In addition, in-
stead of adding one constraint in the cRN, one must
add k constraints to insure dispatchability. Obviously,
the situation will be worse with still weaker conditions,
and, although for sums of a few upper bounds, the
number of subsets to test decreases, the number of con-
straints to add does not.

Handling Interactions between STN
and cRN.

For purposes of schedule execution, the STN and cRN
are combined into a single connected network (cf. Fig-
ure 4), so that changes in either component can a�ect
the other. Therefore, to establish dispatchability in
this network, we must consider interactions between
these basic components. (Note that we are still con-
sidering a single bout of instances of resource use prior
to release.) The basic problem is that propagation in

one component that leads to domain restrictions can,
in turn, lead to restrictions in the other component
that can compromise the conditions for dispatchabil-
ity. Speci�cally,

1. Reductions in cRN upper bounds may delete values
in the STN that are necessary to insure dispatcha-
bility in the temporal subnetwork.

2. Increasing a lower bound of an STN interval may
require an increase in the lower bound of the corre-
sponding resource interval in the cRN, thus violating
cRN dispatchability condition (ii).

In this section we describe procedures that can be
followed during execution to avoid compromising dis-
patchability in these ways. Since these are di�erent for
the two kinds of interaction, each is described in turn.

For the cRN!STN interaction, the following obser-
vation is pertinent. If changes are made to the STN,
the only part of the graph we have to worry about is be-
tween the point of change, which we will call the \crit-
ical point", and variables that are already instantiated
(i.e. events that are already �xed). Dispatchability will
still hold with respect to future domains by virtue of
the original STN dispatchability. Now, when we detect
that a resource constraint may be violated, if instead of
lowering the upper bound of a future resource-interval
in order to satisfy that constraint, we change the up-
per bound associated with the variable currently being
instantiated, then we reduce the `dangerous' region of
the STN (variables with domains that might contain
unsupported values) to NULL. Moreover, condition (ii)
for cRN dispatchability insures that we will not have
to reduce any upper bounds for resource use until we
arrive at the penultimate member of the set of activ-
ities - regardless of the order in which these activities
are �xed. In this case, reduction of the upper bound of
the penultimate activity cannot compromise dispatch-
ability, given the dispatchability of the original STN
and the bijective character of the mapping of temporal
onto the resource intervals.

To insure that the STN!cRN interaction does not
compromise dispatchability, before selecting a tempo-
ral value for an event we must ascertain that this will
not lead to an increase in any lower bound for the inter-
val of a future activity that uses the resource. Given
condition (ii), the possibility that increasing a lower
bound for resource use will compromise dispatchabil-
ity does not even arise until one reaches the last ac-
tivity in the bout. This means that if a subset of the
activities associated with use of a resource can be des-
ignated as \candidate-last activities", then we do not
have to consider this problem unless one of these ac-
tivities is a�ected. Alternatively, we can consider the
set of \candidate-penultimate activities", and in this
case we can coordinate the set of STN domains with
the set of cRN domains that are relevant to the prior
interaction.
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Both interaction problems can be solved, therefore,
if it can be guaranteed that when we encounter a situa-
tion where a change can compromise dispatchability by
limiting future options, we can always choose a value
that will not have this e�ect. Ful�lling the require-
ment that such values always exist is simpli�ed by the
following theorem.

Theorem 1. The requirements, that the lower
bound be present in the penultimate cRN domain, so
that the �nal domain does not need to be adjusted, and
that there will be a value in a temporal domain that
does not necessitate increasing the lower bound of an
adjacent domain in the candidate-penultimate set, each
imply the other.

Proof: Given the cRN guarantee, the bijective,
monotonic mapping from STN to cRN implies that
the original lower bound will be present in the corre-
sponding STN domain and, therefore, that values were
present in adjacent domains to support this value. Al-
though the cRN guarantee involves a speci�c penulti-
mate activity, it must hold for any activity that might
become the penultimate one. It therefore pertains to
the same set of activities as the STN guarantee. Con-
versely, the STN guarantee is that all lower bound val-
ues in the candidate-penultimate set can be supported,
and this implies the cRN guarantee by virtue of the bi-
jective, monotonic mapping.

Given this theorem, a demonstration of either guar-
antee is su�cient to solve the `interaction problem'.
We will show how to guarantee STN lower bounds.
First, we must determine which activities fall into

the candidate-penultimate set This can be done as
follows. First �nd the resource-activity in the cur-
rent bout with the latest end-time. If this activity
doesn't overlap with any other resource-activity, then
it needn't be considered, and one can start with the
next-latest activity. After locating the �rst activity
to be considered, we must also �nd all other resource-
activities whose time bounds overlap with the �rst. To-
gether, these comprise the candidate-penultimate set.
Now, the only situation where the lowest value in a

critical domain might necessarily be increased is one
with, (i) a variable, or node, C that represents the
end-time of a resource-activity in the candidate penul-
timate set and, (ii) an arc (constraint), AC to that
node from a node other than the start-time, B. More-
over, there will only be a problem if constraint AC
forces the end-time C to be greater than a given value,
without putting similar constraints on the start-time.
In this case, depending on the start-time chosen, the
end-time and hence the interval-duration can be forced
to take a value greater than the minimum. This can
be avoided when the STN is made dispatchable by
replacing the constraint between A and C with one
between A and B, the start-time for the same activ-
ity. This can be done (given the triangle inequality) if

j AB j + j BC j = j AC j (MMT98). We will assume
that this can be done during the planning stage, where
there is more time for processing and even undoing
results to meet this criterion. As a result of this ma-
nipulation, both the start- and end-times are subject
to the same constraint, so the restriction on end-times
that we must avoid cannot occur. If this is done for
each such situation involving a candidate-penultimate
activity, then this establishes the guarantee.
The following idea allows us to generalize these guar-

antees so that values need not be present to support
lower bounds, but only a speci�ed lowest value.

De�nition 1.We will refer to the accumulated dif-
ference between the original upper bounds for resource
use, u and the actual usage r,

jX

i=1

ubi �

jX

i=1

ri;

as the (accumulated) credit that we may apply in the
future when choosing values for resource use.

By \applying credit", we mean that one can allow
for more than minimal usage, in e�ect increasing the
lower bounds, as long as one does not exceed the credit.
(In this case, of course, we must reduce the quantity
of credit that is available by an amount equal to the
increase in the lower bound.) An important special
case is when the credit equals or exceeds the maximum
excess use. Since we can calculate the latter quantity
before execution by subtracting the capacity from the
sum of upper bounds, we can compare this with the
credit during execution. If at any point during a bout
of resource use, the credit exceeds this quantity, then
dispatchability cannot be compromised by any further
choices of values for this bout.
More generally, the quantity of credit can be used to

relax requirements on changing the upper bound for
an activity in the candidate-penultimate set. In this
case, we can select a value if the consequent decrease
in the upper bound for the last activity is less than or
equal to the credit.
With these procedures we can insure dispatchability

in the combined STN-cRN network with only a very
modest restriction on the `free-wheeling' execution that
was possible with the STN alone. That is, we must in-
troduce a degree of look-ahead into the procedure in
order to handle the cRN-STN interaction. Fortunately,
condition (ii) insures that look-ahead will be fairly re-
stricted. To handle cRN!STN interaction, at the time
when a penultimate STN node is considered for instan-
tiation, the Executive must check a node in the cRN
adjacent to the associated cRN node. On the other
hand, since the STN!cRN interaction is taken care
of before execution, no look-ahead is required to e�ect
the associated guarantee. Moreover, if we are able to
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set up a schedule so that only a limited number of ac-
tivities can ever become the penultimate activity, we
can also reduce decision making during planning.
One other potential restriction on dispatchable ex-

ecution with a simple STN must be mentioned. In
the original description of dispatchable networks by
(MMT98) the authors describe a procedure for deriv-
ing STNs with the minimumnumber of arcs consistent
with dispatchability. In the present situation, although
it is still possible to derive a \minimal network", this
might not include all the arcs that represent activi-
ties associated with resource use. As a consequence, it
would sometimes be more di�cult to calculate resource
use appropriately during schedule execution. In many
cases, where activities associated with resource use are
a small minority of all activities to be scheduled, the
use of networks that are not completely `minimalized'
will probably have only minor e�ects on execution ef-
�ciency.

Activity Sequences with Resource
Release.

The conditions described in previous sections pertain
to schedule instantiation involving a single bout of re-
source usage, either before the �rst instance of resource
release, or between such instances if these latter return
the capacity to its initial value. Complications arise
when the capacity is not restored to its original value.
For one instance of release, dispatchability conditions
associated with resource use can be expressed in terms
of Cnew,

Cnew = Cinit � max(0;min(
X

Rprev

; Cinit) � lbp) (5)

where lbp is the lower bound for release and the sum on
Rprev is a sum of upper bounds on resource use prior
to release.
More generally, we have the following nested recur-

rence relation for the ith instance of resource release,

Ci = C0 � max
i

(0;max
i�1

(0; ::max
1

(0;min(
X

R0

; C0) � lbp1 )

+ min(
X

R1

; C1) � lbp2 ) :::

+ min(
X

Ri�1

; Ci�1) � lbpi ) (6)

This condition on dispatchability is conservative. How-
ever, during execution successive precise limits on ca-
pacity can be calculated when the values for usage and
release are established. In this case, the formula is
simply,

Ci = Ci�1 � max(0;
X

Ri�1

� Pi) (7)

The argument above does not consider situations in
which resource use overlaps release. In such cases, a
simple ordering by start times can be used to allocate
such activities to bouts so that dispatchability condi-
tions can be calculated correctly.

Summary and Conclusions.
In this paper we have shown how to extend the im-
portant property of dispatchability to the case where
consumable resource constraints are involved. More-
over, we have shown that it is possible to allow the
same kinds of exibility with respect to feasible val-
ues that is possible with simple temporal networks, as
demonstrated in the work of (MMT98).
Not surprisingly with a more complex network to

process and with more conditions to test, the proce-
dure during execution is more complicated than it was
with STNs alone. However, it appears that by using
the strategies outlined above, it is possible to minimize
e�ects on e�ciency of schedule execution.
The present discussion is pertinent to a large class

of problems encountered in planning by autonomous
systems such as spacecraft, of which the solid state
recording problem is one example. In these systems,
greater exibility of resource use can make operations
involving tasks such as data collection more e�ective,
thus increasing the likelihood that overall mission goals
are accomplished.
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Abstract
Targeted for launch in 2008, NASA’s Next Generation
Space Telescope (NGST) will be a premiere research tool
for extending mankind’s understanding of the early
universe.  Largely because of its planned position at the
relatively constraint-free second Earth/Sun Lagrange point
(L2), the mission offers a unique opportunity for enhance-
ments in science efficiency and spacecraft operability via
the use of an onboard observation plan executive (OPE) that
makes real-time plan and schedule adjustments based on
immediate mission conditions.  The goals for including such
a system are to simplify ground system procedures for
observatory scheduling and operations, enable more
efficient use of observatory resources, and protect against
the as-flown characteristics of the vehicle.  The OPE’s usual
function will be the smooth, event-driven execution of a
nominal observation plan provided by a ground-based
scheduling system, but it will also have the authority and
responsibility to autonomously inject standard house-
keeping activities as they are needed, and to respond to
various anomalous real-time conditions that may arise.  The
latter may take the form of suspending plan execution while
taking corrective actions, deleting elements of the plan that
are found to have become nonviable, or perhaps even
inserting new elements into the plan as opportunities arise.
This paper discusses issues and strategies pertinent to OPE
operation.  To provide a definite context within which the
envisioned OPE will function, we include a proposal for a
specific distribution of overall flight software functionality
and a description of an interface protocol between the OPE
and the other flight software applications.  We also discuss
both nominal OPE operations, as well as OPE responses to
various anomalous conditions.

1. Introduction

The Next Generation Space Telescope (NGST), projected
for launch in 2008, is a key component of NASA’s origins
program (cf. Stockman 1997).  Its principal purpose is to
enable studies of the cosmological “dark ages” at times and
distances from just beyond those probed by the Hubble

Space Telescope (HST) to near the “recombination” epoch
studied by the Cosmic Background Explorer.  Current
plans are for NGST to be a large-aperture (~ 8 m) infrared
observatory located near the second (i.e., anti-sunwards)
Earth/Sun Lagrange point (L2). The technological chal-
lenges for creating the required hardware systems are
substantial, particularly in areas such as assembly and
figure control of the segmented primary mirror, cryogenic
operation of complex space systems, and construction and
rigidification of large, low-weight space systems.

Placement of the observatory in a halo orbit about L2
offers certain very appealing features for operations. In
particular, it eliminates all of the moderate-frequency (i.e.,
near hourly) orbit-related constraints that plague missions
in low Earth orbit, including frequent target occultation by
the Earth, increased electronics interference during passage
through the South Atlantic Anomaly, and thermal and
power stresses related to regular passage through the
Earth’s shadow.  Sun related constraints with year-long
periodicity do still pertain.  Additional advantages related
to L2 placement for most of the proposed NGST mission
designs include abundant and continuous solar power and
continuous viewing of the Earth by the antenna system.

This paper presents a concept for an event-driven
observation plan executive (OPE) that gives a moderate
level of planning and scheduling autonomy to the obser-
vatory flight system.  The goal is to achieve a balanced
system that exploits the inherent near-term flexibility
associated with the L2 location while at the same time
relying on the ground segment’s greater computational
power to optimize the nominal moderate- and long-term
science schedule.  This contrasts with most current space
observatories, including NASA’s four Great Observatories
(HST, the Compton Gamma Ray Observatory, the Chandra
X-Ray Observatory, and the Space Infrared Telescope
Facility), which are essentially purely time-based in their
schedule execution design.
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The presentation is divided into the following sections:
(1) this introduction, (2) a review of the flight systems that
constitute the OPE’s operational context, (3) a definition of
the structure of the observation plan provided by the
ground segment as basic input to the OPE, (4) a description
of the communications protocol between the OPE and the
various spacecraft applications whose activities it coor-
dinates, (5) a description of OPE operations under nominal
conditions, and (6) a description of various important OPE
responses to anomalous conditions.

2. Spacecraft Systems Overview

For this study, we assume that the NGST systems will be
essentially those envisioned by the Goddard Space Flight
Center (GSFC) yardstick version of the mission (cf.
Stockman et al. 1997).  We do so merely to provide a
definite context for discussion; the details are not a strong
driver for OPE design.  Although many design decisions
have not yet been finalized, we use present tense in this
paper for smoother presentation.

NGST consists of three principal components: the
spacecraft support module (SSM), the optical telescope
assembly (OTA), and the integrated science instrument
module (ISIM).  Figure 1 shows these three components as
envisioned for the GSFC yardstick.  The large sunshield
deployed from the SSM allows passive cooling of the OTA
and ISIM to ~ 30 K.  During normal operations, the
attitude of the spacecraft is constrained so that the OTA
and ISIM remain within the shadow of the sunshield.

2.1 – SSM Components

The following SSM systems are important from the OPE’s
perspective: health and safety control (HSC), communi-

cations, command and data handling, and attitude and orbit
control (AOC).  SSM thermal and electrical power systems
also exist, but they are transparent to OPE operations.

HSC is of interest because it has ultimate responsibility
for spacecraft health and safety and can therefore deac-
tivate the OPE in emergencies.  Communications is impor-
tant as the conduit of ground-generated control information
(observation plans and real-time commands).  However,
given the L2 mission location, the antenna can be designed
to support communications at all valid spacecraft attitudes,
which avoids observation schedule constraints associated
with communication needs.   

Command and data handling provides two services: (1) a
command and data interface between the various space-
craft systems, and (2) a data recorder for storing mission
observations.  The recorder allows simultaneous recording
and transmission of data and therefore usually imposes no
schedule constraints on the OPE.  However, because the
data recorder has finite capacity, the OPE must verify that
there is sufficient free space available before initiating the
collection of new science data.  This becomes an issue only
in the infrequent event of problems in the ground system
that delay ground collection of the recorded data.

AOC consists of hardware and software elements that
monitor and control the spacecraft attitude and orbit.  AOC
hardware includes Sun sensors, star trackers, gyroscopes,
reaction wheels, and gas thrusters.  The star trackers,
gyros, and reaction wheels together are sufficiently accu-
rate to allow determination and control of the SSM attitude
to ~ 1" (r.m.s.) during science observations, although
significant levels of jitter are present during and just after
large slews and momentum dumps.  The reaction wheels
are also used to absorb momentum resulting from the
external torque imposed by solar radiation pressure on the
sunshield; the reaction wheels can absorb the equivalent of
~ 24 hours’ worth of torque at the worst case attitude.  Gas
thrusters are used to dump the excess momentum periodi-
cally.  A separate set of thrusters is used for velocity
adjustment roughly once every 23 days to maintain the
orbit (cf. Lubow 2000).

2.2 – OTA Components

The OTA consists of the telescope mirrors and the
hardware and software elements required to monitor and
control them.  There are five mirrors.  The segmented
primary mirror and the secondary mirror are open to free
space, while the tertiary mirror, deformable mirror, and
fast steering mirror are inside the ISIM box.  Adjustments
to the control actuators of the primary, secondary, and
deformable mirrors are made periodically (say, monthly) to
compensate for secular changes in their configuration.  The
OPE does not make decisions regarding when such
adjustments are required; these decisions are based on
ground analysis.  The fast steering mirror is used to com-
pensate for residual jitter beyond AOC control capability.
The error signal used for fast steering mirror control is
based on high-rate (~ 30 Hz) guide star observations
acquired with one of the science instruments.

Figure 1 – Yardstick NGST configuration
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2.3 – ISIM Components

The ISIM consists of the three science instruments (SIs)
and the hardware and software required to monitor and
control them.  (Strictly speaking, the software elements and
much of the control hardware are located on the SSM side
of the truss used to isolate the ISIM and OTA from thermal
and mechanical disturbances, but this is a mere architec-
tural “detail” from the perspective of the OPE.)  The three
SIs are the near infrared camera (NIRC), the near infrared
spectrograph (NIRS), and the combined mid infrared
camera/spectrograph (MIRC/S).  Each of the SIs has a
multi-configuration optical/mechanical system for trans-
mission of the light and a focal plane array (FPA) detector
system for measuring the incident light.

The NIRC serves double duty.  Its 8k×8k FPA consists
of 64 separate chips.  During science observations, one of
the chips is selected to serve as a fine guidance sensor and
configured for readout at 30 Hz, with data accumulated
from only a pre-selected 100×100 pixel region of the chip.
The remaining 63 chips can be used for science data
collection.  The NIRC actually consists of four cameras,
each with a separate optical system and FPA.  A broadband
filter can therefore be specified for use with the quadrant
containing the chip to be used for fine guidance, while
narrow band filters are used in the other three quadrants.

The NIRS and MIRC/S both have camera and spectro-
graph modes.  The camera modes can be used either
directly for science or as target location devices in support
of spectrographic science.  For the latter purpose, special
target acquisition processing is used to identify desired
targets and adjust either the configuration of the science
instrument or the spacecraft attitude to place the target(s)
in one or more selected apertures.

The ISIM flight software modules to which the OPE
typically issues command directives are fine guidance
support (FGS), to acquire and hold guide stars; NIRS and
MIRC/S target acquisition support (TAS), to place targets
in designated spectrograph apertures; and NIRC, NIRS,
and MIRC/S science data collection (SDC), to collect and
process data during science exposures.  Each of these in
turn makes use of two SI-specific utility modules: an SI
configuration monitor and control (CMC) module, and an
SI FPA data processing (FDP) module.  The CMC modules
are used for issuing configuration change commands (e.g.,
move focus relay mirror, change filter, activate test lamp,
and activate FPA high voltage) and monitoring SI
engineering telemetry to verify that the commands have
executed properly.  The FDP modules are used for apply-
ing basic data processing functions to the FPA data in
support of the various high-level operations.

The duration of science exposures is limited by the level
of cosmic ray background radiation at L2.  The background
flux is estimated to be such that ~ 10% of image pixels
would be contaminated in exposures lasting 1000 s, which
is currently taken as an approximate upper limit for
exposure times (cf. Isaacs, Legg, and Tompkins 1999).
Occasional solar flares or coronal mass ejections raise the
background particle flux sufficiently to render observations

useless, or even endanger the SI FPAs if detector high
voltage remains active.  Consequently, a radiation monitor
is included that informs the OPE regarding the level of the
background flux to allow it to either postpone observations
or deactivate the SI FPA high voltage, as appropriate.

3. Observation Plan Structure

The ground-based planning and scheduling system
constructs an observation plan for the OPE to execute on a
regular (say, weekly) basis.  The new plan is uplinked and
appended to the end of the currently executing plan, so
there is no break in execution.  Each plan is composed of
the following progressively smaller structures: visits,
groups, activity sequences, and activities.  These compo-
nents have the following definitions and attributes.

Activity: The smallest logical unit uploaded from the
ground for dissemination by the OPE.  Some typical
activities are Slew, Acquire Guide Star, Acquire NIRS
Target, and Acquire NIRC Exposure.  Each activity has a
number of associated parameters, both generic and
specific.  Generic parameters include the ID of the target
application (e.g., AOC for a Slew activity), and a flag
indicating whether successful completion of the activity is
required for the visit as a whole.  Specific parameters are
those required to define the activity, such as target attitude
for a slew, as well as special conditions that must be met
before the activity starts, such as sufficiently low space-
craft jitter for a guide star acquisition.

Activity sequence: A set of one or more activities to be
executed sequentially, e.g., [Slew, Acquire Guide Star,
Acquire NIRC Exposure].

Group: A set of one or more activity sequences to be
executed in parallel.  This allows, for example, a NIRS
dark current calibration in parallel with a NIRC science
exposure.  All activity sequences within a group must be
complete before the next group begins.

Visit: A logically complete set of one or more groups.
Visits typically consist of a slew to a particular target
attitude, followed by a number of science or engineering
activities at that attitude.  A visit may also have associated
parameters, in particular a set of three time parameters: an
earliest permitted start time, latest permitted start time, and
latest permitted end time.  These can be used, for example,
to synchronize the visit with an anticipated astronomical
event or with related observations by other observatories.
Being logically complete, a visit is the natural unit to drop
if one of its required components is found to be nonviable.

Auxiliary Visits: Although not expected to be used for
the NGST mission, a natural extension of the OPE concept
is the use of an onboard pool of auxiliary visits, provided
by the flight operations team (FOT), that the OPE can use
to fill gaps in the plan that may arise as a consequence of
the OPE dropping one or more nonviable visits that
precede a fairly tightly time constrained visit.  We do not
examine this extension here; see Welter, Legg, and
Cammarata 1999 for further discussion.
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4. OPE Communications Protocol

Four types of information exchange are of interest for the
OPE: OPE control directives, activity validation dialog,
activity execution dialog, and state change notifications.
For the following discussion, a “directive” is a high-level
instruction from some control entity (e.g., the OPE) to an
application (e.g., AOC) to perform some function.

The OPE control directives are the mechanism by which
a higher level authority (i.e., the FOT or HSC) controls the
behavior of the OPE.  In addition to the basic directive for
appending a new observation plan to the current one, there
are OPE control directives to suspend and restart the
OPE’s ability to issue directives, to cause it to suspend or
terminate any outstanding directives that it has issued, and
to cause it to smoothly shut down its own function.

An activity validation dialog takes the form of the OPE
directing a flight software application to confirm that an
activity is valid for execution.  For each defined activity
directive, the application has rules for ascertaining whether
or not the activity is currently valid.  For example, AOC is
able to ascertain whether a slew target attitude violates Sun
constraints.  Each application responds to an activity vali-
dation directive with an indication of valid or invalid.

An activity execution dialog consists of the OPE
directing an application to execute a specified activity.  For
safety, the application reapplies its validation procedure to
confirm that the activity is valid.  If it is valid, the appli-
cation attempts to execute the activity.  Upon completing
the activity, the application issues a response message
indicating that the activity succeeded, failed, or was termi-
nated prematurely (e.g., by a subsequent OPE directive).

State change notifications are spontaneously generated
messages issued by the various flight software applications
that inform the OPE of important system state changes that
are not the specific consequence of an earlier OPE
execution directive.  These include such notifications as
spacecraft jitter in low range, guide star lock lost, system
momentum in high range, and external radiation in
medium range.  This state information is used by the OPE
to coordinate observation plan execution flow as well as
possible insertion of appropriate response actions.

5. OPE Operations for Normal Conditions

The normal flow for OPE processing of observation plan
visits is as follows.  The NGST OPE does not review the
plan as a whole immediately upon completion of uplink
from the ground, rather it validates each visit only
immediately before its execution.  At that time, the OPE
conducts a validation dialog with each of the flight
software applications to which an activity in the visit is
addressed.  Any activity found to be invalid at that time is
marked as such by the OPE and suppressed from the plan.
If an activity found to be invalid was also marked as
required for the visit as a whole (e.g., the slew to the visit
target), the visit as a whole is rejected and the OPE moves
on to the next visit.

If the visit has not been rejected, the OPE checks to
determine whether current time is within the specified
permitted start time window for the visit.  If current time
precedes the permitted window, the OPE delays further
processing of the visit until the window is entered. If
current time is within the window, the OPE proceeds to the
next step of evaluation.  If current time falls after the
window, the OPE proceeds to the next visit.

After time window verification, the OPE checks on the
need for insertion of any house-keeping tasks that (1) will
be necessary before the end of the visit and (2) could
interfere with the visit.  The most significant such house-
keeping task is the use of the AOC thrusters to dump
angular momentum.  Although the details for the NGST
momentum management strategy have not yet been
formalized, we have assumed the following variation as an
example of OPE house-keeping insertion.

A constraint on nominal visit duration is imposed
through the ground-based scheduling segment so that the
momentum predicted to be accumulated during any visit
will be less than the diameter of the permitted angular
momentum sphere.  With support from an AOC analysis
utility, the OPE determines whether the expected
momentum accumulation for the visit added to the current
momentum load would cause violation of the permitted
momentum sphere.  If no violation is predicted, no
momentum dump is inserted.  If a violation is predicted,
the analysis utility also computes the minimum dump
necessary, actually the associated post-dump target
momentum, such that the momentum load will just reach
the permitted momentum sphere at the end of the visit.  To
allow for modest schedule deviations, the momentum
sphere for this test is padded inwards slightly to a “yellow”
limit, with the pad the equivalent of, say, two science
exposures.  The parameters for the dump are then packaged
as an activity to be executed in parallel with (i.e., com-
bined as a group with) the initial activity of the visit,
typically a slew.  To allow for the possibility that the initial
activity is not compatible with a parallel dump, the OPE
has a list of activities that are compatible with parallel
momentum dumping.  If the initial activity is not on the
list, the OPE inserts the dump before the first planned
activity of the visit.

The OPE then proceeds to issue the various activity
directives for the activities of the visit.  This process
proceeds on an event-driven basis, thereby alleviating the
ground-based scheduler of the need to model activity
execution in detail or insert execution time pads into the
observation plan.  As activity sequences proceed, the next
activity can only be started after the OPE has received an
activity completed notification from the application
executing the preceding activity.  Furthermore, even if the
prior activity has completed, the OPE delays directing the
execution of any activity until required observatory state
conditions specified for the activity have been realized.
For example, an Acquire Guide Star activity can specify
that the SSM jitter must be within a “green” range before
acquisition can begin, which will have been reported via a
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state change notification message by AOC.  The OPE also
requires completion of all parallel activity sequences
within a currently active group before any activities in the
next group are initiated.

6. OPE Responses to Anomalous Conditions

The OPE responds to various anomalous conditions.  We
present five examples pertaining to NGST operations: loss
of guide star lock, violation of permitted momentum limits
during visit execution, extreme background particle flux,
visit end time violation, and attitude constraint violation.

To support the first three types of violations, each of the
high-level ISIM applications (i.e., FGS, SI TAS, and SI
SDC) support two special generic directives: Suspend and
Resume.  A Suspend directive causes the application to
stop whatever process it is currently doing, reset itself to
begin the process again at a natural starting point, issue a
directive to the associated FDP utility to stop any support
computations, and finally notify the OPE that the Suspend
directive has succeeded.  If an application is not currently
active, it remains in the same state and issues the required
notification of success.

For most applications, the natural starting point is
simply the beginning of the activity, so the whole activity
will be repeated.  For FGS, the natural starting point is
either (1) the beginning of the activity (i.e., to include a
search for and verification of the candidate guide star) if
the guide star has not yet been acquired, or (2) a simple
reacquisition based on the known location of the guide star
if the guide star has been acquired.

A Resume directive causes an application to proceed
forward from its starting point if it is in a suspended state
and issue a success or failure response notification message
to the OPE.  With the exception of FGS, all applications
immediately respond to a Resume directive with a success
notification.  If FGS had not yet acquired a guide star, it
too responds immediately with a success notification; a
subsequent failure to acquire will be reported as a failure of
the not yet completed Acquire Guide Star activity.
However, if the guide star had already been successfully
acquired, FGS postpones notifying the OPE regarding the
outcome of the Resume directive until after it has
succeeded or failed in its reacquisition attempt and then
respond accordingly.

An anomalous event can result in activity failure.  If a
failed activity is marked as required for the visit as a
whole, e.g., if FGS is unable to acquire a guide star, the
OPE terminates the visit and moves immediately to the
next visit.  To accommodate this design, each application
is required to autonomously perform any necessary clean-
up tasks and place itself and associated hardware elements
in one of a small number of easily identified standard states
at the end of any activity.

6.1 Loss of Guide Star Lock

Upon being notified by FGS that a loss-of-lock has
occurred, the OPE activates a script that causes Suspend

directives to be sent to all ISIM applications.  After all
applications have reported success, the OPE issues a
Resume directive to FGS.  If FGS succeeds in acquiring the
star, the OPE issues Resume directives to all of the
remaining ISIM applications; otherwise, the OPE termi-
nates the visit.  To prevent a possible infinite loop of guide
star loss-of-lock events followed by temporarily successful
reacquisition attempts, the OPE keeps track of the number
of loss-of-lock events that occur in each visit and termi-
nates the visit if the number becomes excessive.

6.2 Violation of Momentum Limits

In addition to the yellow momentum limit, two other limits
are defined: orange and red.  The red limit is sufficiently
close to actual reaction wheel saturation that the OPE must
immediately respond to it.  The orange limit, while still
high, is sufficiently below the red limit that there is time to
complete any exposures currently in progress, but no more.
Given the logic for insertion of house-keeping momentum
dumps previously described, it should only be possible for
an orange or red limit violation to occur if some real-time
anomaly has delayed completion of the visit.

Upon being notified by AOC that an orange momentum
limit violation has occurred, the OPE activates a script that
will suspend all ISIM applications after any currently
outstanding activities have been completed.  After all of
the ISIM applications have been suspended, the OPE uses
the AOC analysis utility previously described to determine
parameters for a momentum dump that will reduce the
momentum load sufficiently below the yellow limit so that
the yellow limit will just be reached again at the predicted
end time of the visit.  Because the momentum dump will
induce vehicle jitter, the script instructs the OPE to refrain
from issuing an FGS Resume directive until after the
“green” jitter range has been reachieved.  Thereafter the
script is the same as the end of that used for responding to
a guide star loss-of-lock.

If the red limit is crossed, the OPE’s response is the
same except that it does not wait for the outstanding
activities to run to completion before issuing the Suspend
directives.  To avoid interference between the red violation
response script and the orange script that will have already
been activated, the OPE deactivates the orange script when
the red script starts.

6.3 Extreme Background Particle Flux

Three background particle flux ranges are of interest: low,
medium, and high.  Valid SI measurements can be made
for low background flux.  The SIs are safe but measure-
ments are invalid for medium background flux.  The SI
FPAs are in danger of high-voltage arcing damage if the
background flux is high and the FPA high voltage is on.

When informed of a low-to-medium or medium-to-high
particle flux transition, the OPE activates a script that
suspends all ISIM applications.  If the flux is high, the
OPE also issues high-voltage deactivation directives to the
three CMC applications to deactivate FPA high voltage.
When a high-to-medium transition occurs, the OPE issues
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high-voltage activation directives and sets a timer to delay
progress in the response script for a specified period.
When a medium-to-low transition occurs, the OPE issues
an FGS Resume directive, followed in due course by
Resume directives to the remaining ISIM applications.

6.4 Combined Response Scripts

Given the similarity of the various responses just
described, one can combine them into a single script with
appropriate state condition checks to determine whether
certain elements of the script (i.e., momentum dumping or
FPA deactivation) should be used.  The reception of any
one of the anomaly notification messages appropriate to
activation of the script would result in termination of any
previous version of the script that may already be running
and reactivation of the script from the beginning.

6.5 Visit End Time Violations

Delays in the completion of a visit resulting from anoma-
lies such as those described in the previous subsections
could result in the violation of the visit-specified latest
permitted end time. If this occurs, the OPE terminates the
current visit and proceeds to the next visit.

6.6 Attitude Constraint Violations

If the ground-based scheduler does not specify latest per-
mitted end times for all visits, delays in visit completion
could result in the spacecraft remaining so long at its
current attitude that Sun constraints are violated.  Upon
detecting an attitude violation, AOC slews the vehicle to a
local valid attitude and notifies the OPE.  The OPE then
terminates the current visit and proceeds to the next.

Summary

We have presented a proposal for an onboard observation
plan executive (OPE) tailored for use on the Next
Generation Space Telescope.  The goal is to produce a
system that provides flexible and efficient event-driven
execution of observation plans generated by a ground-
based planning and scheduling system, as well as robust
response to real-time anomalies.  The various sections of
the paper have described the NGST flight systems that
constitute the context within which the OPE will be
operating, the structure of the observation plan provided by
the ground segment as basic input to the OPE, the
communications protocol between the OPE and the various
spacecraft applications whose activities it coordinates,
OPE operations under nominal conditions, and a set of
example OPE responses to anomalous conditions.
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Abstract

In many interesting task environments, agents must
decide priority among competing tasks under
considerable uncertainty.  Moreover, which kinds of
priority-relevant information are available for a
decision will vary in different situations.  An ideal
priority determination process should use whatever
information is available, even it becomes so just
before a decision is required or after a task has been
awarded priority and begun executing.  In this paper,
we identify several kinds of priority-relevant of
information and describe a flexible priority
computation method that uses whatever kinds are
available in a given situation.

Introduction

In everyday environments such as the kitchen or
automobile, people usually have many things they could
reasonably be doing at a given moment.  Some of these
tasks are independent and can be pursued concurrently.
Others interact in ways that demand a choice: which
should be given priority and carried out immediately?
Which  should be deferred, interrupted, or aborted?

For artificial agents, one approach to making such
decisions  is to identify all tasks to be carried out and all
the constraints on those tasks, then search for the best
possible order.  While this can produce optimal or nearly
optimal action orderings, it is only practical in  highly
predictable environments where needed actions and
relevant constraints are known in advance.   Many
everyday environments are not predictable in this sense.
Unplanned actions may be needed to handle unexpected
events – e.g. a car suddenly cuts in just ahead, the phone
rings, an awful song comes on the radio.  Similarly, the
timing and specific actions needed to carry out a task may
not may not be known until it is nearly time to carry them
out.  For example, an agent may know that it will have to
turn left onto Elm Street, but not know which particular
driving maneuvers will be needed to negotiate traffic or
whether it will first have to stop at a red traffic signal.

An alternative approach, reactive prioritization, is
to make rapid priority decisions just before committing to

a course of action.  Unlike the more deliberative approach
in which priority decisions are made arbitrarily far in
advance of execution, a reactive prioritization process
makes such decisions in response to newly available
information about, e.g., which tasks are eligible for
execution at a given moment, whether they interact, and
what timing constraints apply to each.  While these kinds
of  information are sometimes available far in advance,
they often remain uncertain until the last moments before a
task becomes enabled.

Pervasive, priority-relevant uncertainty has at
least two important implications.  The first, as discussed, is
that no maximally-informed priority decision for a task is
possible until that task is eligible for execution.  Thus,
priority must be determined at execution-time, not (only)
in the course of long-term planning.  The second is that
priority decisions will often have to be made in the
absence of potentially significant information.  For
instance, not knowing about an impending task to answer
the phone makes it impossible to choose between tasks on
the basis of which better tolerates interruption.  The best an
agent can do is to use whatever information is available
when a final (or otherwise consequential) priority decision
is needed.

In designing reactive priority mechanisms, it is
important to consider what types of information are likely
to be available at decision-time and how each type should
influence task priority.  In this paper, we identify several
kinds of  information that may be available, each of which
can be used as a heuristic basis for deciding priority.
These heuristics are combined into a more general
prioritization process that takes advantage of situations in
which more than one kind of priority-relevant information
is available.  This paper extends work reported in Freed
(1998) and has been implemented as part of a plan
execution system used to simulate expert human operators
doing complex tasks (Freed and Remington, 1997).

Heuristic Prioritization

Tasks need to be prioritized when they conflict.  For
example, when two tasks require looking at widely
separated points in the visual field, prioritization is needed
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to decide which gets to control the orientation of visual
sensors.  In some cases, not getting priority merely implies
that a task will have to wait (or be interrupted if it is
already ongoing).  In others, the task cannot wait; deferring
it means causing it to fail.  Deferring a task imposes a
(possibly zero) expected cost.  More specifically, each task
can be viewed as having a set of deadlines, each of which
incurs a specific expected cost if missed; deferring a task
increases the likelihood that one or more of its deadlines
will be missed.  For instance, the task of getting home
from work might involve deadlines for arriving on time for
a planned dinner, seeing a televised sports event from the
beginning, and having time with the kids before they go to
bed.  The longer the task of driving home is deferred, the
greater the risk of “deadline bust” to each associated
deadline.  The job of an agent’s priority mechanisms is to
minimize the total expected cost of deadline busts across
all tasks over an extended period.

Designing a prioritization mechanism able to do
this job in an uncertain task environment requires first
identifying kinds of priority-relevant information that
might be available at decision-time.  In the worst case, the
agent only knows the identity of  tasks currently being
considered for execution.  In this situation, there is no
choice but to select randomly between competing tasks.  A
somewhat more benign case occurs if there is information
on one priority-relevant task attribute.  These attributes
include anything that affects the likelihood of missing a
task deadline including: (1) the time remaining until a
particular deadline bust, (2) the cost of missing a deadline,
(3) task duration, and (4) the time cost resulting from task
interruption.  The role of each of these attributes in
determining priority can be expressed as a set of heuristic
decision rules as follows (cf. Firby, 1989):

All else being equal, …
    do the task with the nearer  deadline first
    do the task with the most important deadlines first
    do the briefer task first
    do (continue) the ongoing task rather than switch

These rules make it possible to decide priority
when only one kind of information is available.  Ideally, a
prioritization mechanism will make use of more
information if more is available.  To understand how such
a mechanism should be realized, it is worth considering
each of these information types in greater depth.

Urgency.  Prioritization is only an issue because there may
be undesirable consequences to deferring a task.  The idea
of a deadline, after which undesirable consequences will
occur, is thus likely to be a central feature of any approach
to prioritization.   We generalize this idea slightly by
treating deadline-pressure as one (very important) source
of urgency.  Others possible sources include value-decay-
pressure in which the cost of waiting comes gradually

rather than all at once (e.g. dinner slowly cools down and
becomes less enjoyable to eat), and hazard-pressure where
the likelihood of an undesirable occurrence remains
constant for a given interval rather than approaching
certainty during a given interval (e.g. lightbulb goes out).
These forms of urgency differ in the shape of the expected
cost curve.  For a deadline, the curve remains relatively
flat for a while and then quickly approaches maximum.  A
hazard function smoothly asymptotes to maximum
following a curve of the form 1-bt  {0<b<1}.  Value decay
tends to increase linearly to maximum.  However, in all
forms of urgency, longer execution delay means greater
expected cost.

Importance.  Another crucial factor is the measure of how
bad it would be to miss a given deadline. 1  This is
especially relevant if meeting a deadline for one task
precludes meeting a deadline associated with another.  In
such cases, the best thing to do is to make the more
important deadline – i.e. avoid the effects of the bust with
greater negative utility.

Duration.  A task’s duration affects its proper priority in
two ways.  First, doing one task requires deferring all
competing tasks, thereby increasing the risk of deadline-
busts for all these tasks’ associated deadlines.  Thus, as a
task’s duration increases, so does opportunity cost of
carrying it out.  The importance of this effect increases not
only with increased task duration, but also with the number
of tasks deferred.  It is often desirable to execute a number
of brief tasks before starting one of longer duration, even if
the lengthier task is more important.

A second effect of duration is to reduce the
amount of time available before a given task must be
started (or resumed).  For instance, a 2 minute duration
task with a 5 minute completion deadline should be started
within 3 minutes; doubling the duration but leaving the
deadline constant would allow only one minute to start the
task.   This urgency-increase effect opposes the effect of
increased opportunity cost since a longer duration task
apparently needs to be started sooner.

The heuristic “all else being equal, do the briefer
task first” applies because the opportunity cost effect is
greater than the increased-urgency effect.  If we assume
that competing tasks have the same number of equally
distant and equally costly deadlines, then the only basis for
comparison is the amount of increased risk (a
monotonically increasing function of deferral time) to
                                                          
1 Currently, all forms of urgency are treated analogously to
deadline-pressure.  Value-decay-pressure is handled by selecting
some decay threshold to treat as a deadline-bust.  Thus, one
might assume that dinner will stay hot for  5 minutes; after this
(arbitrary) deadline, it is assumed to have become “not hot” and
thus a suffered cost.  Hazard pressure is handled by selecting a
probability threshold p and treating the time taken for an
undesired event to have occurred with probability p as a deadline.
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each.  For example, assume there are five tasks to do, four
with 1 minute durations and one with a 5 minute duration.
Doing the latter task first imposes a combined 26 minutes
of deferral on all tasks.  Doing the task last imposes only
10 minutes.  The next section discusses an approach to
prioritization that accommodates both duration effects.

Interruption cost.  Priority should be recomputed
whenever changed circumstances indicate that a previous
priority decision may have become obsolete.  For example,
when a task becomes enabled and thus eligible for
execution, its priority should be assessed against any
competing tasks including those ongoing.   Similarly,
situation changes that either lower the likely priority value
of an ongoing task or increase the value of a previously
deferred task should trigger reassessment of priority
decisions.  When reprioritization reveals that an ongoing
task should have lower priority than a competitor, the task
should be interrupted.

However, interruption imposes costs that should
be considered when computing the priority of an ongoing
task.  For instance, interruption may require time-
consuming transitional activities to avoid consequences of
an overly-sudden interruption – e.g. pulling over to the
side of the road to avoid crashing when interrupting a
driving task.  Other activities may be required to maintain
task viability during the interruption interval and to
correctly resume (Freed 1998).  These activities require
time and resources that may be useful for other tasks and
thus impose an opportunity cost.

 Interruption may impose other costs as well.
Important preconditions may be undermined during the
interruption, making the task impossible or more
expensive.  Facilitating conditions (opportunities) may
lapse, raising task cost.

Priority mechanisms should take the expected
cost of an interruption into account, suppressing
interruptions unless the expected benefit exceeds the
expected cost.  When cost/benefit information is not
available, the agent should assume a greater-than-zero
interruption cost and inhibit interruption.

Robust Prioritization

The four heuristics listed above are useful for comparing
candidate tasks, each on the basis of a single type of
priority-relevant information.  Ideally, an agent should take
advantage when more information is available.  One fairly
simple case to consider is when the agent knows both the
deadline proximity and duration of candidate tasks.  Since
deadline describes when the task should be completed,
duration can be subtracted from this time value to
determine when the task should be started.  This is much
more valuable measure of task urgency than deadline

alone, since it makes it possible to determine how much
time can be spent on alternative tasks before the risk of a
deadline bust rises dramatically. Thus, as measured
urgency  (U = deadline-proximity – task-duration)
approaches zero, priority should rise to task maximum.

The computation of urgency can be further
refined by considering the effect of deferring a task in
favor of some alternative.  For example, if a task has a 5
minute completion deadline and lasts 3 minutes, then
deferring it in favor of a competitor that also takes 3
minutes to carry out will cause a missed deadline.  To
avoid such scenarios, priority mechanisms should not only
consider a task’s duration, but also the duration of the
strongest competing task.  When the requisite information
is available, priority should be determined on the basis of a
tasks’ adjusted-urgency (U’ = U – competitor-duration).

A more complicated case is when information on
both the time remaining until deadline (unadjusted
urgency) and the cost of missing the deadline is available.
What makes this complex is that the relevance of these two
factor depends on another factor: how busy the agent is in
the timeframe in which the tasks needs to be carried out.
When the agent is not very busy and, thus, probably has
time to do all intended tasks, the priority mechanism’s job
should be to make sure that a bad  ordering decision
doesn’t  lead to an unnecessarily missed deadline.   In this
case, urgency is a highly relevant determinant of priority
while importance (the cost of a missed deadline) is largely
irrelevant.  In contrast, when the agent is so busy that there
isn’t time to do everything, missed deadlines are
inevitable.  In this case, the priority mechanism needs to
make sure that important deadlines are met, even if that
means allowing less important deadlines to bust.  To
handle both importance and urgency in a unified
framework, priority mechanisms need to employ some
measure of busyness.

To see how busyness might be usefully
represented, it is worth formally characterizing the overall
purpose of the prioritization process.  A useful
characterization, as indicated earlier, is that the process
should try to minimize the long-term cumulative cost of
missed deadlines.  With respect to any given priority
decision, the task whose deferral would add most to this
total cost should be selected.  A task’s expected cost of
deferral (ECD) is computed by summing the expected
deferral cost for each of its associated deadlines.  Thus,

∑==
deadlines

d

dCostdptaskECDtaskiority )(*)()()(Pr

where d is a task’s deadline, p(d) is the probability of
missing d if task is deferred in favor of its current strongest
competitor, and C is the cost of missing d.  The identity
and cost (importance) of the task’s deadlines are assumed
to be known.  The probability of missing a given deadline
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must be derived from how much time is available to do the
task, U’ (adjusted-urgency), and how great the task load
will be (busyness) when the task, if deferred, again
becomes eligible for execution.  In particular, measured
busyness must be a probability distribution B of minimum
task delays – i.e. the probability that a deferred task will
have to be further deferred for greater than or equal to a
given time t.  The value of p(d) is thus B(t) for given
busyness distribution B with t = U’.

Consider a simple example.  Task Q is eligible for
execution.  Its duration is 2 minutes.  It has one associated
deadline whose importance (the cost if the deadline is
missed) is 7 and whose urgency (how much time is left to
complete the task in order  to avoid missing the deadline)
is 5 minutes.  Q is competing with other tasks for priority
including the current strongest contender, R.  R’s duration
is also 2 minutes.  If R is selected for execution over Q,
there will be (5-2-2) = 1 minute left in which to start Q
after R is completed.  This value is Q’s adjusted-urgency.
Given a busyness distribution B in which  the value B(1
minute) = .3, .3 is the likelihood that, given all the other
tasks that need doing, there will be at least a 1 minute
delay before a given task can be started.  The cost of
deferring Q is thus .3*7 = 2.1.  If this value is higher than
that for R, Q becomes the strongest competitor in the
priority competition.

Three problems remain to be solved to make this
approach viable.  The first and simplest one is to handle
the possibility that needed information is not available –
i.e. if a task’s duration, deadline urgencies, or deadline
importance values are unknown.  The simplest approach is
to factor out the influence of the missing information by
assuming the same value as that of the task’s strongest
current competitor.  For instance, if R in the example
above has duration 2 minutes but Q’s duration is unknown,
assume a duration of 2 minutes.  Similarly, if an
unadjusted urgency value is missing, set it equal to the
average of R’s urgency values.  If R’s value is unknown,
an arbitrary default value can be used instead.

The second problem is how to determine priority
for an ongoing task.  As mentioned earlier, interrupting an
ongoing task may entail various costs such as the
opportunity cost of time spent safely winding down
(safing) the task and then, later, restoring any
preconditions violated during the interruption interval.
Our approach is to assume that the priority of an ongoing
task is ECD + expected-interrupt-cost where the latter term
is either known for the task or defaults to some nominal
positive value.  This has the effect of inhibiting
interruptions in proportion to their undesirable
consequences (Freed, 1998; cf. Gat, 1992).

The third problem is how to determine the shape
of the minimum delay (busyness) distribution B.  A few
shape attributes are obvious.  For example, p(0) = 1.0 – i.e.
it is certain that a task will be delayed for at least 0 time.
B is monotonically decreasing; thus, the more urgent the

task, the greater likelihood of an unavoidable deadline
bust.  B asymptotes to 0 since, in principle, there is no
limit to the amount of delay that might be required.
Beyond this, B’s distribution depends on various factors as
described below:

Projection.  In delaying a task for less important but more
urgent alternatives, an agent risks losing the opportunity
for timely execution because of emerging, higher priority
tasks.  To prevent this, the agent should take advantage of
any predictions it can make about the set of future tasks a
given current task will have to compete with if deferred.
These future tasks can be divided into two categories:
known and unknown.  Known tasks are those that the
agent already intends to execute when it gets a chance,
including those whose enabling preconditions have not yet
been satisfied.  The unknowns include  not-yet-specified
subtasks of known tasks and tasks that do not yet exist
(e.g. to handle a future phone call).  Even the unknowns
can be predicted to some degree.  For example, an agent
may know that this is a time of day when many phone calls
should be expected, even if no specific answer-phone-call
tasks currently exist.   Similarly, it may be possible to
project the most likely decomposition of a task into
subtasks, even if the final decomposition decision has not
been made.

The best possible delay estimate would, of course,
be based on the most detailed and complete possible
projection of future tasks.  The described prioritization
approach uses very coarse projections.  Only a single
known task, the strongest current competitor, is treated
individually (used to compute adjusted-urgency).  All
other tasks including lower priority enabled tasks, non-
enabled tasks, and unknown tasks, are considered in the
aggregate via the busyness function.  If instead, all known
tasks were handled by explicit projection, the busyness
function would only have to account for residual task-load
– i.e. the “unknown” tasks.

Thus, the proper shape of this function depends
on how projection is used in the prioritization process as a
whole.  Given the modest use of projection in our current
approach, the function should incorporate any relevant,
available information about future tasks.  For example, if
the total number or average duration of known tasks is
relatively high, the distribution should be skewed towards
relatively long delays.  If an imminent surge of new (not
yet existing) tasks is expected, expected delay should be
proportionately greater.

Task attributes.  Any delay distribution must make
additional assumptions about the effect of task attributes –
particularly duration and importance – on future priority
decisions.  Importance is significant because the more
important a task is, the higher its priority will rise as the
task deadline nears.  This implies that importance should
have two opposing effects on priority.  Since the cost of
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missing an important deadline is relatively great,
importance increases expected-deferral-cost and, thus,
priority.  But because the likelihood of  having to further
delay an important task for even more important tasks is
relatively low, the probability of a deadline bust is lower,
making priority lower.  The sum of these opposing effects
should vary with urgency: as the deadline approaches, it is
more crucial that the task be a strong competitor now
rather than permit a delay that counts on it being a strong
competitor later.

To the extent that short tasks have an advantage
in gaining priority, a task’s duration is also relevant for
determining what kind of deferral distribution should be
assumed.  By raising a task’s urgency  in proportion to it’s
strongest competitor’s duration, the prioritization process
outlined above essentially penalizes long duration tasks –
i.e. it has a strong short-duration bias.  This bias should be
taken into account in the expected-delay distribution by
assuming relatively short delays for brief tasks.

Task duration affects B in other ways as well.
First, longer tasks can often be interrupted for brief periods
without significant effect.  For example, a driver can look
to the side of the road for a brief period without much risk,
even though a longer look would significantly interfere
with driving.  An agent can take advantage a task’s
insensitivity to interruption to carry out brief tasks (Freed
1998).  Similarly, lengthy tasks often have built in idle
(slack) times during which brief tasks can be “fit in.”  For
example, a driver stopped at a red light may have a brief
time to use hands and eyes freely for non-driving tasks.
The ability to execute brief tasks during idle intervals or
within permissive interruption constraints means that short
tasks can effectively be run concurrently with longer tasks
they nominally conflict with.  All of these effects imply
that shorter tasks are less likely to be delayed for a long
period.

Domain specificity.  Another set of factors affecting the
true distribution of task delays arises from characteristics
of the task environment.  This is especially the case for
estimating the incidence of new tasks (e.g. rate of new
phone calls, new customers at a bank, new aircraft for an
air traffic controller,..).  Environmental factors can also
affect busyness less directly.  For example, in conditions
that make task failure likely, more time will have to ve
spent on failure recovery.  This essentially increases
expected task duration and, thus, busyness.

An approach that makes it possible to address all of these
factors is to assume a normal distribution of delays, using
the complement of the cumulative distribution (a sigmoid)
for B; each factor mentioned above affects the mean of the
distribution.  For instance, an increase in the expected
incidence of new tasks increase the mean while a reduction
in the average importance of known tasks reduces it.  To
account for the very significant effect of task duration D,

we assume a default distributional mean equal to D.  This
captures the idea that a task is typically competing with a
small number of tasks of about its own duration. Tasks that
are significantly shorter will likely be executed earlier and
with little effect on overall delay, while tasks that are much
longer will be executed later or pseudo-concurrently.

Conclusion

In realistically uncertain worlds, an agent often lacks
advance knowledge of what new tasks will arise and what
specific actions will be needed to make progress at known
tasks; thus, it cannot consider characteristics of these
unspecified later actions when deciding order among
earlier ones.  Moreover, an agent often cannot be sure
when an opportunity to execute its tasks will arise, and
therefore cannot decide whether the task should come
before or after some other, independently enabled task.
With “when” and “what” uncertain, agents must instead
reactively prioritize between currently eligible tasks based
on whatever information is available.

This paper presents an approach based on the idea
that the role of a prioritization process should be to
minimize the cost of missed deadlines over a lengthy
interval.  The approach is designed to make best use of
whatever priority-relevant is available at decision-time.  If
some useful piece of information is not available, the
priority process should behave in a robust fashion,
essentially falling back on simpler, more general decision
heuristics.  The greatest challenge has been to design an
approach that flexibly decides whether to focus on meeting
urgent deadlines or whether to insure that the most
important deadlines are met.
 The described approach captures a wide range of
factors affecting priority decision-making under
uncertainty.  Furthermore, it is simple and computationally
inexpensive enough to be realized in a practical agent
architecture (Freed and Remington, 1997; Freed, 1998).
However, the approach falls short of ideal in several of
ways.  First, contingent behaviors associated with a task
such as dealing with failure, managing periodic behavior,
coping with undesirable side-effects, are important
contributors to task load but have yet been accounted for.
Perhaps more importantly, the current approach makes too
little use of projection  The current approach can only
make use of information on a single projected task (the one
with the highest current priority), even though
characteristics of other tasks may be known.  Finally, the
problem of setting the crucial mean-delay parameter is left
almost entirely to domain-specific rules.  While there may
be no avoiding the need for such rules, the qualitative
discussion of the effects of various factors does not
provide a clear methodology for creating them.  Future
work should remedy these deficiencies.
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Abstract

This paper describes a dynamic planning system for co-
ordinating multiple rovers in collecting planetary sur-
face data. A distributed planning system is shown to
generate rover plans for achieving science goals, coor-
dinate activities among rovers, monitor plan execution,
and perform re-planning when necessary. Speci�cally,
we describe how rover command generation can be au-
tomated to help relieve some of the burden on human
operators. We describe the issues inherent in planning
for a distributed set of rovers and discuss how these
issues can be addressed in a dynamic and uncertain
environment. Finally, we describe a prototype system
for automatically generating low-level commands and
monitoring their execution for a team of rovers with
the overall goal of achieving a set of geology-related
science requests.

Introduction

In the past few years, landmark events have recently
taken place in the areas of space exploration and plan-
etary rovers. The Mars Path�nder mission was a ma-
jor success, not only demonstrating the feasibility of
sending rovers to other planets, but displaying the sig-
ni�cance of such missions to the scienti�c community.
Future missions are being planned to send additional
robotic vehicles to Mars as well as to the outer planets
and an asteroid (JPL 1999). In order to increase science
return and enable certain types of science activities, fu-
ture missions will require larger sets of rovers to gather
the desired data. These rovers will need to behave in
a coordinated fashion where each rover accomplishes a
subset of the overall mission goals and shares any ac-
quired information. In addition, it is desirable to have
highly autonomous rovers that require little communi-
cation with scientists and engineers on earth to perform
their tasks. An autonomous rover will be able to make
decisions as how to best achieve science goals as well
as being able to react to its environment and handle
unforeseen events while achieving these goals.
An autonomous rover (or team of rovers) must re-

spond in a timely fashion to a dynamic and unpre-
dictable environment. Rover plans must often be mod-
i�ed in the case of fortuitous events such as science

observations completing early and setbacks such as tra-
verses taking longer than expected or hardware failures.
We call this situation continuous planning, where a plan
must be continually updated in light of changing oper-
ating context. In such an operations mode, a planner
would be continuously updating the plan (e.g., every
few seconds) based on sensor and other feedback, and
then modifying the plan accordingly to accommodate
any new data. Making an onboard planner capable of
such timely responses has a number of bene�ts:

� The rover can be more responsive to unexpected
changes in the environment. These changes could
involve the status of executing activities, as well as
updates to state (e.g., temperature, sun angle) and
resource values (e.g., battery power).

� The planner can reduce reliance on predictive models
since it will be updating its plans continually. Thus,
inevitable modeling errors or uncertainties in the en-
vironment can be handled without causing plan fail-
ure and without explicitly representing all contingen-
cies in the planning model.

� Rover fault-protection and execution layers need
worry about controlling the rover over a shorter time
horizon since the planner will replan within a shorter
time span.

In a traditional cycle of plan, sense and act, plan-
ning is considered a batch process and the system op-
erates on a relatively long-term planning horizon. For
example, operations for Sojourner were planned on the
ground on a daily basis (Mishkin et al. 1998). In this
mode of operations, the rover state at the start of the
planning horizon was pre-determined based on feedback
from the previous day's operations. The science and en-
gineering operations goals were then be considered, and
a plan (i.e., command sequence) for achieving the goals
would be generated. This plan was then uplinked to the
rover for execution where it would be executed onboard
the rover with minimal amounts of exibility. If an un-
expected event or failure occurred the rover would often
be taken into a safe state by fault protection software.
The rover would then wait in this state until the ground
operations team could respond and determine a new
plan. Correspondingly, if an unpredictable fortuitous
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event occurred, the plan could not be modi�ed to take
advantage of the situation. This paper presents a con-
tinuous planning approach to rover operations, which is
intended to achieve a higher level of responsiveness in
situations where re-planning is required or bene�cial.

Speci�cally we present work on using the CASPER
(Continuous Activity Scheduling, Planning Execution
and Replanning) (Chien et al. 1999) system to con-
trol a set of distributed rovers for planetary operations.
Based on an input set of science goals and each rover's
initial conditions, CASPER generates a sequence of ac-
tivities that satis�es the goals while obeying each of
the rover's resource constraints and operations rules.
Plans are produced by using an \iterative repair" al-
gorithm that classi�es conicts and resolves them in-
dividually by performing one or more plan modi�ca-
tions. Once a valid command sequence is generated,
commands are relayed to the rover's low-level control
software for execution. Execution updates are relayed
back from this software where they are monitored by
CASPER. As information is acquired regarding com-
mand status and actual resource utilization, the plan-
ner can update future-plan projections. From these
updates, new conicts and/or opportunities may arise,
requiring the planner to replan in order to accommo-
date the unexpected events. Planning activities are
distributed among the rovers where each rover is re-
sponsible for planning for its own activities. A central
(non-dynamic) planner is responsible for dividing up
the goals among the individual rovers in a fashion that
minimizes the total time spent traversing by all rovers.

The planning system described in this paper has been
integrated with a number of other software components
to form a multi-rover execution architecture (Estlin
et al. 1999b; 1999a). These components include: a
machine-learning science analysis tool which analyzes
planetary data and generates a set of goals for new sci-
ence observations, a simulation environment that mod-
els multiple rover-science operations in a Mars-like ter-
rain, a real-time multi-rover hardware and kinematics
simulator, and control software from the NASA JPL
Rocky 7 rover. This architecture is currently being
tested on a geology-related science task where it must
autonomously evaluate what science observations to
perform, generate the necessary steps, and ensure exe-
cution of these steps is successful.

The remainder of this paper is organized in the
following manner. We begin by characterizing the
multiple-rovers application domain and describing our
particular science scenario. Next, we present a multi-
rover execution architecture which controls and coordi-
nates operations for a team of rovers. We then focus
on the planning aspects of this architecture; in particu-
lar we discuss our approach to distributed planning, our
utilization of the CASPER continuous planning system,
and our approach to plan optimization for this domain.
The �nal sections discuss related and future work in-
cluding system extensions and testing on real rovers.

Cooperating Rovers for Science

Utilizing multiple rovers on planetary science missions
has many advantages:

� Multiple rovers can collect more data than a single
rover. A team of rovers can cover a larger area in a
shorter time where science gathering tasks are allo-
cated over the team.

� Multiple rovers can perform tasks that otherwise
would not be possible using a single rover. For in-
stance, rovers landed at di�erent locations can cover
areas with impassable boundaries that would be un-
reachable by a single rover. Also, with several rovers,
one rover can a�ord to take more risk and thus at-
tempt tasks that usually might be avoided.

� More complicated cooperative tasks can be accom-
plished, such as taking a wide baseline stereo image
(which requires two cameras separated by a certain
distance).

� Multiple rovers can enhance mission success through
increased system redundancy. If one rover fails, then
its tasks could be quickly taken over by another rover,
helping to ensure mission success.

In all cases, the rovers should behave in a coordi-
nated fashion, dividing goals appropriately among the
team and sharing acquired information. It is also desir-
able to have rovers behave in a dynamic fashion where
plans can be adjusted when unexpected events or fail-
ures occur.
Coordinating multiple distributed agents for a mis-

sion to Mars or other planet introduces some interest-
ing new challenges for the supporting technology. Issues
arise concerning communication, control and individual
on-board capabilities. Many of these design decisions
are related, and all of them have an impact on any
on-board technologies used for the mission. For exam-
ple, the amount of communication available will deter-
mine how much plan data can be easily shared among
rovers to perform necessary re-planning. It also a�ects
how much each rover can coordinate with other rovers
to perform tasks. The control scheme will determine
which rovers execute what tasks. For instance, some
rovers may be utilized only for science data gathering,
while other may be used for planning and/or science
analysis. Decisions on the on-board capabilities of each
rover can also determine the independence of a rover.
Planning, execution and plan monitoring can be per-
formed onboard all rovers or on a select few which will
provide these capabilities as a service to other rovers.
For the framework discussed in this paper, we have

initially chosen the con�guration of a team of three
rovers where each rover has a planning and data anal-
ysis tool on-board. Each rover can thus plan for its
assigned goals, collect the required data, and perform
data analysis on-board which will direct its future goals.
In addition, each rover can monitor its own plan execu-
tion and perform re-planning when necessary. Central
planner and data-analysis modules are assumed to be
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located on either a lander or one of the rovers, which
are used to coordinate goals and science data.
Currently, we are evaluating our framework by test-

ing its ability to build a model of the distribution of ter-
rain rocks, classi�ed according to composition as mea-
sured by a boresighted spectrometer. To perform test-
ing for di�erent planetary terrain models in a simulated
environment, di�erent rock �elds (i.e., landscapes) are
generated by using distributions over rock types, sizes,
and locations. Science goals consist of requests to take
spectral measurements at certain locations or regions.
These goals can be prioritized so that, if necessary, low
priority goals can be preempted (e.g., due to resource
constraints such as low battery power).
Science goals are divided among the three rovers.

Each rover is identical and is assumed to have a spec-
trometer on-board as well as other resources including a
drive motor, a solar panel that provides power for rover
activities, and a battery that provides backup power
when solar power is not available. The solar panel can
also be used to recharge the battery. Collected science
data is immediately transmitted to the lander where it
is stored in memory. The lander has a limited amount
of memory and can only receive transmissions from one
rover at a time. The lander can also upload data (and
simultaneously free up memory) to an orbiter whenever
the orbiter is in communication contact.

Multi-Rover System Architecture

The distributed planning system described in this pa-
per is part of a multi-rover execution architecture that
coordinates multi-rover behavior and provides for au-
tonomous rover operations (Estlin et al. 1999a). In
particular, this architecture utilizes the MISUS system
for autonomously generating and achieving planetary
science goals (Estlin et al. 1999b).
The overall execution architecture is shown in Fig-

ure 1. The system is comprised of the following major
components:

� Planning: A dynamic, distributed planning system
that produces rover-operation plans to achieve in-
put rover-science goals. Planning is divided between
a central planner, which eÆciently divides up sci-
ence goals between rovers, and a distributed set of
planners which plan for operations on an individual
rover. Each rover planner provides execution mon-
itoring and re-planning capabilities where plans are
updated as necessary in reaction to unforeseen events.

� Data Analysis: A distributed machine-learning sys-
tem which performs unsupervised clustering to model
the distribution of rock types observed by the rovers.
This model is used for prioritizing new targets for ex-
ploration by the rovers. This system is designed to
direct rover sensing to continually improve the model
of the scienti�c content of the planetary scene.

� Rover Control Software: Control software from
the NASA JPL Rocky 7 rover that handles execution
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Figure 1: Multi-Rover Execution Architecture

of low-level rover commands in the areas of naviga-
tion, vision and manipulation (Volpe et al. 1997).
This software performs low-level monitoring and con-
trol of the rover's sub-systems.

� Rover Hardware Simulator: A multi-rover simu-
lation environment that is used to simulate the rover
terrain and rover hardware operations within that
environment (Yen, Jain, & Balaram 1999). The sim-
ulator models rover kinematics and generates sen-
sor feedback which is relayed back to the continuous
planner for each rover.

� Environment simulator: A multiple rover simula-
tor that models di�erent geological environments and
rover science activities within them. The simulator
manages science data for each environment, tracks
rover operations within a given terrain, and reects
readings by rover science instruments.

The overall system operates in a closed-loop fash-
ion where the data analysis system can be seen to take
the role of the scientist driving the exploration pro-
cess. Spectra data are received by the on-board data
analysis algorithms which broadcast information to the
central analysis module. This module forms a global
model of the data and generates a new set of obser-
vation goals that will further improve the accuracy of
the model. These goals are passed to a central plan-
ner which assigns them to individual rovers in a fashion
that will most eÆciently serve the requests. Then each
rover planner produces a set of actions for that rover
which will achieve as many of its assigned goals as pos-
sible. These action sequences are executed using the
rover low-level control software and a multi-rover sim-
ulation environment that relays action and state up-
dates to each onboard planner, which can re-plan when
unexpected events or failures occur. Action sequences
are also executed within the environment simulator and
any gathered data is sent back to the rover data analy-
sis modules. This cycle continues until enough data is
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gathered to produce distinct models for any observed
rock types.
This architecture is currently being evaluated using

the geological scenario previously described. The rest
of this paper focuses on the planning aspects of this ar-
chitecture. For more information on other components,
please see (Estlin et al. 1999b; 1999a).

Planning for Multiple Rovers

To produce individual rover plans for a team of rovers,
we have developed a distributed planning environ-
ment utilizing the CASPER continuous planning sys-
tem (Chien et al. 1999). CASPER is an extended ver-
sion of the ASPEN (Automated Scheduling and Plan-
ning Environment) system (Fukanaga et al. 1997),
which has been developed to address dynamic planning
and scheduling applications. Its components include:

� An expressive modeling language to allow the user to
naturally de�ne the application domain

� A constraint management system for representing
and maintaining domain operability and resource
constraints, as well as activity requirements

� A set of search strategies and repair heuristics

� A temporal reasoning system for expressing and
maintaining temporal constraints

� A graphical interface for visualizing plans/schedules

� A real-time system which monitors plan execution
and modi�es the current plan based on activity, state
and resource updates

CASPER employs techniques from planning and
scheduling to automatically generate a rover-activity se-
quence which achieves the input goals. This sequence
is produced by utilizing an iterative repair algorithm
(Zweben et al. 1994) which attacks conicts individu-
ally. Conicts occur when a plan constraint has been
violated where this constraint could be temporal or in-
volve a resource, state or activity parameter. Conicts
are resolved by performing one or more schedule modi-
�cations such as moving, adding, or deleting activities.
A rover that is at the incorrect location for a scheduled
science activity is one type of conict. Resolving this
particular conict involves adding a traverse command
to send the rover to the designated site. Other conicts
may include having more than one rover communicating
with the lander at the same time or having too many
activities scheduled for one rover, which over-subscribe
its power resources. Figure 2 shows an example plan in
this domain displayed in the CASPER GUI.

Distributed Planning

To support missions with multiple rovers, we developed
a distributed planning environment where it is assumed
each rover has an on-board planner. This allows rovers
to plan for themselves and/or for other rovers. If there
is a slow communication link between rovers, or between
a rover and the lander, it may be useful to have rovers

Figure 2: Example rover plan

construct their own plans and to re-plan dynamically
when necessary. Also, by balancing the workload, dis-
tributed planning can be helpful when individual com-
puting resources are limited.
The approach to distributed planning utilized in this

environment is to include a CASPER continuous plan-
ner for each rover, in addition to one central, batch
planner. The central planner develops an abstract plan
for all rovers, while each rover planner develops a de-
tailed, executable plan for its own activities. The cen-
tral planner also acts as a router, taking a global set of
goals and dividing it up among the rovers. For exam-
ple, a science goal may request an image of a particular
rock without concern for which rover acquires the im-
age. The central planner could assign this goal to the
rover that is closest to the rock in order to minimize
the traversals of all rovers. This master/slave design is
just one approach to distributed planning; we are also
experimenting with several other forms of distributed
planning (Rabideau et al. 1999).

Continuous Planning for each Rover

To achieve a high level of responsiveness for each on-
board rover planner, we utilize a continuous planning
approach. Rather than considering planning a batch
process in which a planner is presented with goals and
an initial state, each rover planner has a current goal
set, a current state, a current plan, and state projec-
tions into the future for that plan. At any time an
incremental update to the goals or current state may
update the current plan. This update may be an unex-
pected event or simply time progressing forward. Each
planner is then responsible for maintaining a plan con-
sistent with the most current information. The current
plan is the planner's estimation as to what it expects
to happen in the world if things go as expected. How-
ever, since things rarely go exactly as expected, the
planner stands ready to continually modify the plan.
Iterative repair techniques, as mentioned above, enable
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Initialize P to the null plan
Initialize G to the null set
Initialize S to the current state

Given a current plan P and a current goal set G

1. Update G to reect new goals or goals that are no
longer needed

2. Update S to the revised current state
3. Compute conicts on (P,G,S)
4. Apply conict resolution planning methods to P

(within resource bounds)
5. Release relevant near-term activities in P to RTS

for execution
6. Goto 1

Figure 3: CASPER continuous planning algorithm

incremental changes to the goals, initial state or plan
and then iteratively resolve any conicts that may arise.
The CASPER planning algorithm is shown in Fig-

ure 3. In this approach, the rover state is modeled by
a set of plan timelines, which represent the current and
expected state of the rover over time. At each loop
iteration, the actual state of the rover drifts from the
state expected by the timelines, reecting changes in
the world. As updates are relayed back from sensors
and the rover control software, CASPER updates the
timelines models with actual state values, resource val-
ues, start times and completion times for activities.
Each of these updates, when synchronized with the

current plan, may introduce conicts (Step 3). As ex-
plained previously, a conict is when an action in the
plan is inappropriate because its required state and/or
resource values violate the plan constraints. Whenever
such a conict exists, CASPER notes the conict and
performs plan modi�cations to bring the plan back into
sync with the current state and future-plan projections.
Because this process is continuous, the plan rarely has
the chance to get signi�cantly out of sync. As a result
the high-level actions of the system are more responsive
to the actual rover state.

Plan Optimization

One of the dominating characteristics of the multi-
rover application is rover traversals to designated way-
points. Decisions must be made not only to satisfy
the requested goals, but also to provide more optimal
(i.e., eÆcient) schedules. Both the central planner and
the rover continuous planners can consider optimiza-
tion goals during the repair process. As certain types
of conicts are resolved, heuristics are used to guide
the search towards making decisions that will produce
higher quality schedules. In other words, when several
options are available for repairing a conict, these op-
tions are ordered based on predictions on how favorable
the resulting schedule will be.

For this application, we have implemented heuristics
based on techniques for the Multiple-Traveling Sales-
men Problem (MTSP), which is an extension of the
well-known Traveling Salesman Problem (TSP) (John-
son & McGeoch 1997). For MTSP, at least one member
of a sales team must visit each city such that total trav-
eling time is minimized. Both the central and individ-
ual rover planners utilize the MTSP heuristics. These
heuristics are used both to select which rover should
be assigned a particular science activity and to select
a temporal location for the science activity in a partic-
ular rover's plan. In previously reported results, they
were shown to make a signi�cant impact in reducing
overall traversal distance and expected execution time
(Rabideau, Estlin, & Chien 1999).

Related Work

While there has been a signi�cant amount of work on
cooperating robots, most of it focuses on behavioral ap-
proaches that do not explicitly reason about assigning
goals and planning courses of action. One exception is
GRAMMPS (Brummit & Stentz 1988), which coordi-
nates multiple mobile robots visiting locations in clut-
tered, partially known environments. GRAMMPS also
has a low-level planner on each robot and uses a similar
approach to distribute targets. However GRAMMPS
uses simulated annealing where we use a greedy ap-
proach, and GRAMMPS does not look at multiple re-
sources or exogenous events.
Many cooperative robotic systems utilize reactive

techniques (Mataric 1995; Parker 1999). These systems
have been shown to exhibit low-level cooperative behav-
ior in both known and \noisy" environments. However,
they have not been shown useful for mission planning
where a set of high-level science and engineering goals
must be achieved in an eÆcient manner.
There are a number of approaches to robot autonomy

which utilize AI planning and scheduling techniques,
however, most of these are focused on controling single
robots and don't directly address coordinating multiple
robots. The Atlantis (Gat 1992) and 3T cite (Bonasso
et al. 1997) architectures use di�erent software layers
to combine deliberation and reactivity. Another archi-
tecture for rover autonomy (Washington et al. 1999)
integrates planning as a ground-based system, where a
contingency planning approach is used to handle situa-
tions where a plan has been deemed likely to fail.

Future Work

We have several planned extensions to this work. First,
we would like to extend the central (master) planner
for this architecture to also utilize continuous planning
techniques. Currently only the individual rover plan-
ners can perform re-planning. However, it would be
bene�cial to have this capability extended to the cen-
tral planner which distributes science activities among
the rovers. This extension would enable the central
planner to re-assign goals when necessary or bene�cial.
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We plan to extend the distributed planning architec-
ture to be more robust and able to handle rover failure
situations. For instance, if a rover fails the planning
system should recognize this failure (e.g., the rover has
not responded for a certain amount of time), refrain
from sending any new goals to that rover, and re-assign
any current goals assigned to that rover.
We also want to handle more extensive commu-

nication between rovers. Currently, rovers share
data through the central data-analysis module. We
would like rovers to also share plan information which
would enable us to experiment with di�erent forms
of distributed planning, such as team-based strategies
(Tambe 1997) or market-based approaches (Sandholm
1993) to multi-agent coordination.
Last, we plan on testing the overall execution archi-

tecture in a more realistic setting using actual rovers
as opposed to the hardware and environment simula-
tors described previously. This testing will occur in the
JPL Mars yard using rovers such as JPL's Rocky 7 and
Rocky 8 (Volpe et al. 1997).

Conclusions

In this paper we have presented a distributed plan-
ning environment for coordinating multiple-rover ac-
tivities. This environment utilizes continuous planning
techniques to monitor plan execution for each rover and
perform re-planning when necessary. Dynamic plan-
ning and re-planning techniques enable a team of rovers
or act autonomously and be responsive to unexpected
changes in the environment. This system is part of
a multi-rover execution architecture which is currently
being tested on its ability to autonomously classify a
set of terrain rocks in a Mars-like environment.
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Abstract

In this paper we describe JERRY, a system which
supports the interactive design, planning, con-
trol and supervision of the operations of au-
tonomous systems in a space environment. The
requirement of Interactive-Autonomy in JERRY
is achieved by a set of tightly integrated special-
ized sub-systems, which have been designed to
perform e�ectively and eÆciently their speci�c
tasks, and, at the same time, to be open to the
interaction among each other. This results in
a system with a potential high level degree of
autonomy, but which can still be controlled and
guided through user interaction.

A System Supporting Interactive
Autonomy

The increasing complexity of the services re-
quested to robotic devices in space applications
results in a need for more and more sophisticated
and autonomous systems. A compelling require-
ment for space autonomy has led to the develop-
ment of systems that perform automatically com-
plex, time consuming and critical tasks without
the need of human intervention (Muscettola et al.
1998).

The recent development of space autonomy for
critical tasks results however in a set of novel prob-
lems, including the possibility of humans to con-
trol autonomous robotic devices (see for exam-
ple (Dorais et al. 1998; Jerico 1998)) still guar-
anteeing a high level of safety of the operations
that are perfomed interactively. This is due to
quite a number of factors, such as the possibility of
completely unexpected (and possibly dangerous)
events that may require humans intervention. We
call Interactive-Autonomy the ability of a system
to provide a high level of autonomy still retain-
ing the possibility for the user to monitor, control
and override potentially autonomous operations
in a safe way.

In this paper we describe JERRY, a system
which supports the interactive design, planning,
control and supervision of the operations of au-
tonomous systems in a space environment. The

requirement of Interactive-Autonomy in JERRY is
achieved by a set of tightly integrated specialized
sub-systems, which have been designed to per-
form safely, e�ectively and eÆciently their speci�c
tasks, and, at the same time, to be open to the
interaction among each other. The user can di-
rectly operate each module step-by-step, and ver-
ify (at di�erent levels of detail) the results of crit-
ical steps against safety requirements.

JERRY has been developed as part of an ongo-
ing and more ambitious project funded by ASI,
the Italian Space Agency. In this application,
JERRY provides its functionality to di�erent kinds
of users which have to design, control and mon-
itor a SPIDER Robot Arm performing quite com-
plex tasks, e.g., the set up of several kinds of ex-
periments in a space workcell. Even though the
project is still running, a �rst prototype is already
working and available for experimentation. In this
scenario, e.g., the SPIDER arm is supposed to ex-
tract a tray from a shelf, �x it to one out of two ta-
bles and then automatically perform experiments
moving objects contained in the tray.

In this paper, we �rst provide a global overview
of JERRY by describing its high level architecture.
We then describe the main features of each sub-
system: the user interaction module, the planning
module, and the execution module. Some conclu-
sions end the paper.

JERRY's Architecture
The design of JERRY is based on three main com-
ponents:

� User-System Interaction Module. It pro-
vides the user with the ability to inspect and
direct every step of a system operation, via user
requests of di�erent services to specialized sub-
systems designed as \open systems".

� Planning Module. It provides a set of dif-
ferent planning services, including the gener-
ation of di�erent kinds of plans of actions to
achieve di�erent kinds of high-level speci�ca-
tions of tasks to be performed (called goals), the
validation of plans against requirements, their
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step-by-step simulation.

� Execution Module. It provides a set of dif-
ferent execution services. It can compile a high
level plan (provided by the planning module)
into a program that is directly executable by
a robotic device, execute it according to dif-
ferent modalities (e.g., either interactive or au-
tomatic), and monitor the execution. Further
services include the step-by-step generation of
actions, the veri�cation that the executable pro-
gram satis�es certain requirements and its step-
by-step simulation.

The architecture of JERRY has been designed ac-
cording to a main design choice: the User-System
Interaction Module is central and can request
di�erent services from the other modules, in a
\client-server style". The user can control the ow
of JERRY 's operations and choose both the degree
of automation and the level of interaction.

� Degree of automation. The user can de-
cide to run the system within a wide range of
options with di�erent degrees of automation,
from fully automatic to step-by-step interactive
modes. The possibility is given to the user to
decide to run the system in a fully automatic
way: a goal is provided to the planning module
that generates a plan to be executed by the exe-
cution module. failure). On the other hand, the
user can decide to control interaction modality,
the user may ask the Planning Module for a
plan; the plan is inspected, validated and/or
simulated; the �rst planning step is extracted
from the plan and passed to the Execution Mod-
ule that compiles it into an executable program;
the program is inspected, possibly veri�ed and
simulated, and, �nally, it is executed and mon-
itored.

� Level of interaction. The user can access
data and control the behavior of highly auto-
matic systems by providing either high level
speci�cations of what has to be achieved or de-
tailed constraints on how the task should be
performed. For instance, the user can request
the planning module to generate automatically
a high-level plan which achieves a high-level
speci�ed goal, or can direct the planner by im-
posing constraints on how to generate the plan.
Analogously, the user can request the execution
module to generate automatically the low level
program corresponding to a plan, or can direct
the execution module by imposing constraints
on how the low-level robotic plan has to be gen-
erated.

The structure of the system is represented in Fig-
ure 1. In this �gure, the planning and execution
modules are visible in the top part, while the in-
teraction module (with the sub-modules acting as
interfaces with one of the other modules) is the
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Figure 1: Structure of the System

\big box" at the bottom. The \Domain De�ni-
tion" box represents a module that allows the user
to specify the domain considered, and is currently
part of the simulator. The \Robotic System" box
represents the real robotic device. The solid ar-
rows represent a ow of information, while the
dotted arrows represent a still missing connection.
For example, the dashed arrow between \Domain
De�nition" box and the interface, means that cur-
rently the user can specify a domain not through
the interface, but only interacting directly with
this module.

JERRY can work at two levels of interactions
that are targeted to two typical users of space
robotic devices: the \programmer-level" contains
functionalities o�ered to the robotic system op-
erator; the \user-level" deals with activities per-
formed by on-ground scientists or payload opera-
tors. At the programmer-level, the user can pro-
gram the behavior of the device using its typi-
cally low-level interface language, e.g. the lan-
guage (called PDL2) currently used to control
the SPIDER arm. A typical PDL2 instruction
is \move linear to point-in-space", where
point-in-space is a triple of real values. This
level of interaction is adequate for an experi-
enced user. Nevertheless, programming complex
tasks at this level may be very diÆcult for a user
which has no experience with the programming
language, e.g. PDL2. Moreover, low-level pro-
grams can be hard to maintain and re-use. For
this reason, interaction at the user-level provides
also non experts (e.g. scientists) with the ability
to specify robotic tasks. Such users do not need
any knowledge of the underlying physical struc-
ture of the robotic device (e.g. of the degrees of
freedom of the arm) or of the physical scenario
(e.g. of the exact position in space of the objects).
A typical high-level instruction is \get object

object-name".
Operationally, the two interaction levels reect

two working modalities:
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user-drives-system-supervises: in this modal-
ity an expert, knowledgeable of the underlying
robotic device and mission interacts with the
system by describing the mission in the robotic
device interface language. The mission is en-
coded as a low level plan which is directly exe-
cutable by the execution module.

system-drives-user-supervises: in this modal-
ity the user (even a non expert, e.g. a scientist)
�xes the goal in a high level speci�cation lan-
guage. The high level speci�cation cannot be
executed directly. The system can generate au-
tomatically executable low level programs. This
is achieved in two steps. First, the planning
module generates a set of high level actions
which have to be executed in di�erent situa-
tions and which are guaranteed to achieve the
goal. Then the execution module, for each high
level action, generates a corresponding sequence
of low-level actions in the robotic device inter-
face language (e.g. PDL2). Independently from
how the low-level plan is generated, the exe-
cution module is responsible for its execution,
and for the monitoring of the behavior of the
robotic system. At each step of the execution
process, the user can be prompted for validat-
ing the high-level action to be executed, or, if
required, the current low-level program.

The resulting architecture is highly modular and
con�gurable: the system can be con�gured to
work at di�erent levels of automation (e.g. de-
pending on the activity performed by the planning
module) and the user has the possibility to exi-
bly access data manipulated at di�erent levels of
detail (e.g. data at the execution or at the plan-
ning level). The interface can be set to be used
by users with di�erent experience (programmers
or scientists) and can also be adapted to di�er-
ent input devices (e.g., driven entirely frommouse
or touchpad, entirely from keyboard, or, possibly,
from custom input devices).

A �rst version of the demonstrator has been
fully implemented, is available for inspection, and
is currently under development to improve its gen-
eral performance and to enrich the services of-
fered to the user. This demonstrator (whose ar-
chitecture is represented in Figure 2) is based
on a client/server architecture in which a client
interface service is able to continuously interact
with the planning, execution and simulator mod-
ules. This has involved the development of spe-
cialized protocols that allow each interaction mod-
ule to safely exchange data with the three servers
through point-to-point communication. Current
protocols are deliberatively designed to be very
simple to minimize the overhead of communica-
tion between modules and to quickly arrive to a
�rst integration.

Interaction Module
The role of software systems like JERRY is to allow
di�erent users to employ complex robotic devices
while preserving the levels of responsibility that
users have in their working contexts. Both the
user-level and the programmer-level preserve the
usual working activity, but o�er a number of addi-
tional functionalities that allow the users to focus
on strategic and decisional tasks and to delegate
repetitive or very diÆcult tasks to the interactive
planning software.

Figure 3: JERRY Interactive Module

The JERRY Interaction Module consists of a
Graphical User Interface endowed with the follow-
ing functionalities:

� Task oriented help.

� Problem speci�cation targeted to the planner
domain representation language.

� Inspection of high-level plans: a rather simple
representation of the plan returned by the plan-
ner is shown and the possibly of inspecting the
representation of single plan states is given.
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� Inspection of plan compilation: the low-level
code produced by the plan compilation and ex-
ecution module is shown to the user.

� Robotic device simulator visualization.

The current look of the Interactive Module is
shown in Figure 3. In the Figure we can see
(i) the Help window (top-left) that is designed as
a separate entity; (ii) the planning problem spec-
i�cation window (main window below the Help
window); (iii) the plan current in execution (top-
right); (iv) the PDL2 code corresponding to the
action being executed (middle-right); and (v) the
execution of the plan coming from the simulator
(bottom-right). The size of the 4 windows corre-
sponding to point from (ii) to (v) are intercon-
nected and vary according to the user current fo-
cus of attention that is always contained in the
main window.

According to the subdivision made between
the \programmer-level" and the \user-level", the
tasks allowed to each level have been de�ned. In
the current implementation of the \user-level in-
teraction" the users can: (i) get acquainted with
an operating environment; (ii) de�ne speci�c pa-
rameters of the scenario (e.g., decide the number
of trays in an experiment); (iii) specify the goal he
want to achieve and the constraints to satisfy in
achieving it; (iv) ask the planning module to de-
termine the set of actions (the plan) that achieves
the goal; (v) display and comment the resulting
plan; (vi) activate plan execution. Special atten-
tion has been dedicated to automatically check-
ing the consistency of commands selected by the
user and in o�ering explanation facilities for non-
expert users. The \programmer-level interaction"
o�ers: (i) the possibility of creating robot pro-
grams directly using the robot language, (ii) the
choice of having the planning and execution mech-
anisms that work as background help of the pro-
grammer; (iii) the possibility of experimenting
di�erent operational situations o�ering a choice
among alternative input modalities. The possi-
bility of customizing the interaction modality is
relevant for experimenting on-ight use of the pro-
gramming ability. In is worth observing that be-
ing the Interaction Module con�gured as a client
it is possible to serve multiple users at the same
time each of them interacting with personalized
functionalities.

This module is implemented in Java (compati-
ble with JDK 1.2) and represent right now a quite
e�ective platform for studying multiple interac-
tions styles that refer to di�erent ways of sharing
task responsibility among users and the system.

Planning Module
The Planning Module provides the user with the
ability of requesting services by means of high
level speci�cations entered through the Interac-

tion Module. It has been designed to be highly
independent of the programming language that
is directly executable by robotic devices (e.g.
PDL2). The Planning Module works on data
structures that encode a high level description of
the possible situations in a given domain (called
states), of the operations that a robotic device can
execute (called actions), and of the requirements
for tasks to be performed (called goals).

A state of the domain is represented sym-
bolically, e.g. by expressions like Y is on
experiment tray Z. Operations of the robot are
represented as high-level actions, e.g. Get object
Y, put Y on experiment tray Z. Plans are pos-
sibly conditional and iterative programs that spec-
ify the actions to be executed. An example of plan
is the following.

Plan experiment-1 is:
Get object Y;
if this action succeeds,
then put Y on experiment tray Z,
otherwise get object Y1;
...

At this level of abstraction, the Planning Mod-
ule provides three main functions: Validation,
Simulation and Plan Generation.

The validation function allows the user to check
properties of the scenario or of putative plans.
For instance, the user can ask whether Y is on
experiment tray Z in the current scenario, or
whether Y is on experiment tray Z after exe-
cuting plan experiment-1. This functions pro-
vides the user with a higher con�dence that a task
can be performed correctly in a given way. It can
also be used to inspect and debug possible plans.

The simulation function allows the user to sim-
ulate the execution of a given plan. It shows the
evolution of the states of the domain. For in-
stance, the user can request a simulation of the
plan experiment-1. The simulation is performed
at the level of abstraction of the Planning Mod-
ule, i.e., by showing high level actions and how
they a�ect the state of the domain. Again this
functionality can be used to gain a better under-
standing of how a plan can perform a given task
and to debug plans.

The plan generation function is the core of the
Planning Module. The user, through the Inter-
action Module, provides a goal to be achieved,
i.e., a high level speci�cation of the task to be
performed. The goal is a high level description
of what has to be achieved. It does not de-
tail how the task should be performed. For in-
stance, a simple goal can be one of Y,Y1 on
experiment tray Z. The Planning Module gen-
erates automatically plans of actions (e.g. the
plan experiment-1) whose aim is to achieve the
task speci�ed by the goal. The plan of actions
is the output which can be passed, through the
Interaction Module and possibly under control of
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Get Object Y

Release Object

Y on Z

Unload Y from Z

Put Y on tray Z

Hold Y1 2 3

Figure 4: An example of FSM

the user, to the Execution Module.
This set of services has been designed to meet

the requirement of Interactive-Autonomy. Indeed,
a main characteristic of the planning module is
that it is an open system, i.e. each of its oper-
ations (e.g. plan search) can be inspected, con-
trolled and guided by the user. This fact opens
up the possibility to provide a planning function-
ality which supports a \user-centered operation
mode" for JERRY, in which the planner interacts
exibly with the user interface module. The user,
beyond asking for a goal to be satis�ed, can ask
the planner for di�erent services, e.g. show all
the plans which satisfy a goal, select one of them,
query the planner about the possible e�ects of the
execution of plans, re-use existing plans, ask the
planner to validate a user de�ned plan, inhibit
some plans, query the planner about the current
state of the execution in terms of high-level ac-
tions. This \user-centered" modality requires a
design of the planning module which is di�erent
in philosophy wrt current state of the art planners.
The planner is no longer the automatic generator
of solutions, it becomes a system which exploits
its automatic generation capabilities to support
the user to �nd the right solution and is exible
enough to adjust its plan generation activity to
di�erent user requirements.

It is worth remarking that the functionalities
of JERRY allow to implement an interesting set
of mixed-initiative problem solving strategies that
are somehow disjunct from other approaches de-
voted to inserting the user in the loop (Smith &
Lassila 1994; Tate 1997). In our current frame-
work the user is left free of choosing to either solve
the problem himself or request the intervention of
speci�c JERRY functionalities.

The Planning Module is developed on top of
the MBP system (Model Based Planner) (Cimatti
et al. 1997; Cimatti, Roveri, & Traverso 1998).
MBP is an extension of the NuSMV Model
Checker (Cimatti et al. 1999). It implements the
\Planning as Model Checking" paradigm. The
implementation relies heavily on existing work in
the context of �nite-state program veri�cation and
in particular on the work described in (Clarke,
Grumberg, & Long 1994; Burch et al. 1992;
McMillan 1993). The underlying idea is that
domains are modeled as Finite State Machines
(FMSs) and plans are generated by searching the
states of FSMs. For instance, a FSM for a simple
domain is depicted in Figure 4. We have three

possible states (labeled as 1,2,3). Each state is
labeled with the facts that hold in that state,
e.g. Hold Y states that in state 2 the robot
has at hand the object Y, Y on Z states that in
state 3 the object Y is on the experiment tray
Z. The actions Get Object Y, Put Y on tray Z,
Release Object, Unload Y from Z are repre-
sented as transitions (arcs) between states.

Plan Compilation/Execution
The Plan Compilation/Execution module is re-
sponsible for transforming a high-level, user-
oriented abstract plan into a sequence of low-level,
machine-oriented execution plan. In more detail,
the Plan Compilation/Execution module receives
in input from the interface an arbitrarily long se-
quence of actions to be performed, and generates a
sequence of actions (a \program") that the robot
can directly execute. For example, in the case of
a robotic arm, the program corresponding to a
move(o; l) (\move object o to location l") looks
like the following sequence of instructions

move near <pos o> by <distance>;
open hand;
move linear <pos o>;

close hand;
move near <pos l> by <distance>;
move linear <pos l>;

open hand;

where <pos o> and <pos l> are six tuples of real
numbers specifying the positions of the object and
of the location respectively, while <distance> is a
real number specifying how far (along the vector
specifying how to approach the position) the arm
should be from the �nal position. Notice, the fun-
damental distinction between a \user-level" and
a \programmer-level" plan: while the former is a
sequence of symbolic actions, the latter necessar-
ily involves some reasoning about the geometry of
the scenario. As for the planning module, the exe-
cution module provides the possibility to validate,
simulate and/or generate a PDL2 program.

Given that the positioning module has to deal
with variables with in�nite domains (typically in-
tervals over the reals), the set of possible low-level
plans cannot be directly encoded into FSMs. Be-
cause of this, we adopted a di�erent mechanism
in which the \validation function" rely on a user-
de�ned LALR(1) grammar (see (Aho, Sethi, &
Ullman 1986)) de�ning the whole set of admissible
PDL2 plans. This grammar, though dependent on
the particular scenario under consideration, can
be inspected and/or modi�ed by the user before
each session. The grammar is then directly com-
piled into an executable code corresponding to a
program accepting a plan only if it is admissible.

A \generation function" allows to associate to
any high-level sequence of actions a corresponding
sequence of low-level sequence of PDL2 instruc-
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tions. In any case, the sequence of actions given
to the execution module does not need to corre-
spond to a complete plan. Instead, the user can
(i) break a plan as given by the planning module
into blocks of planning actions, (ii) require the
compilation of all or some of the blocks, or (iii)
ask for an execution program di�ering from the
proposed one.

Finally the \simulation function" allows for the
validation of either the generated or user-provided
PDL2 program by a suitable call to the simulator.
As obvious result, the movement of the SPIDER is
displayed on a screen for validation by the user.

As for the planningmodule, the execution mod-
ule is an open system in which the parameters
a�ecting its behavior (e.g. the availability of
a given low-level action) can be inspected, con-
trolled and eventually modi�ed by the user. For
example, the user can inhibit the execution mod-
ule from using a certain low-level action because
it involves some dangerous or unavailable move
for some joint. This will a�ect both the valida-
tion and the generation routines: no plan with the
undesired instruction will be accepted and gener-
ated. As above, this fact opens up the possibility
to provide a \user-centered operation mode" for
JERRY, in which the execution module interacts
exibly with the user interface module.

A Java (compatible with JDK 1.2) implemen-
tation of the execution module has been realized,
and is currently tested for improvements. The
compilation from the grammar to the executable
code has been realized via CUP (see (Hudson et
al. 1998)).

Conclusions
This paper describes JERRY, a system for the
automatic generation and execution of plans for
robotic devices, and briey reports about the case
study of the SPIDER arm. The main feature of the
system is the high-level of interaction that the user
can decide to have with the system. This level of
interaction is critical in the context of spatial mis-
sions, where (i) unforeseen emergencies can hap-
pen, and (ii) still the mission has to proceed, pos-
sibly under the humans' supervision.

JERRY has been designed to be a exible, open
architecture. Care has been taken in order to dis-
tinguish the domain-dependent from the domain-
independent tasks in order to minimize the cus-
tomization e�orts. JERRY's architecture and un-
derlying ideas have been tested and made oper-
ational for monitoring and controlling a SPIDER
robotic arm operating in an indoor environment
very close to the payload tutor experiment de-
scribed in (Di Pippo et al. 1998).
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Abstract
This paper will discuss a proof-of-concept prototype for
automatic generation of validated rover command
sequences from high-level science and engineering
activities.  This prototype is based on ASPEN, the
Automated Scheduling and Planning Environment.  This
AI-based planning and scheduling system will
automatically generate a command sequence that will
execute within resource constraints and satisfy flight rules.
Commanding the rover to achieve mission goals requires
significant knowledge of the rover design, access to the
low-level rover command set, and an understanding of the
performance metrics rating the desirability of alternative
sequences.  It also requires coordination with external
events such as orbiter passes and day/night cycles.  An
automated planning and scheduling system encodes this
knowledge and uses search and reasoning techniques to
automatically generate low-level command sequences
while respecting rover operability constraints, science and
engineering preferences, and also adhering to hard
temporal constraints. Enabling goal-driven commanding of
planetary rovers by engineering and science personnel
greatly reduces the requirements for highly skilled rover
engineering personnel and Rover Science Team time.  This
in turn greatly reduces mission operations costs.  In
addition, goal-driven commanding permits a faster
response to changes in rover state (e.g., faults) or science
discoveries by removing the time consuming manual
sequence validation process, allowing rapid what-if
analyses, and thus reducing overall cycle times.

Introduction
Unlike more traditional deep space missions, surface
roving missions must be operated in a reactive mode, with
mission planners waiting for an end of day telemetry

downlink--including critical image data--in order to plan
the next day’s worth of activities.  Communications time
delays over interplanetary distances preclude simple
'joysticking' of the rover.  A consequence of this approach
to operations is that the full cycle of telemetry receipt,
science and engineering analysis, science plan generation,
command sequence generation and validation, and uplink
of sequence, must typically be performed in twelve hours
or less.  Yet current rover sequence generation is manual,
with limited ability to automatically generate valid rover
activity sequences from more general activities/goals input
by science and engineering team members. Tools such as
the Rover Control Workstation (RCW) and the Web
Interface for Telescience (WITS) provide mechanisms for
human operators to manually generate plans and command
sequences.  These tools even estimate some types of
resource usage and identify certain flight rule violations.
However, they do not provide any means to modify the
plan in response to the constraints imposed by available
resources or flight rules, except by continued manual
editing of sequences.    This current situation has two
drawbacks. First, the operator-intensive construction and
validation of sequences puts a tremendous workload on the
rover engineering team.  The manual process is error-
prone, and can lead to operator fatigue over the many
months of mission operations.  Second, the hours that must
be reserved for sequence generation and validation reduces
the time available to the science team to identify science
targets and formulate a plan for submission to the
engineering team.  This results in reduced science return.
An automated planning tool would allow the science team
and sequence team to work together to optimize the plan.
Many different plan options can be explored.  The faster
turnaround of automated planning also permits shorter than
once a day planning cycles.

The Rover Control Workstation (RCW) tool, used to
operate the Sojourner rover during the Pathfinder mission,
does provide visualization for vehicle traverse planning, a
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command interface, constraint checking for individual
commands, and some resource estimation (for sequence
execution time and telemetry volume). However, this tool
was never intended for automated goal-based planning of
rover activities.  To deal with these issues, there is a need
for a new tool for automated goal-based planning of rover
activities.

We are using AI planning/scheduling technology to
automatically generate valid rover command sequences
from activity sequences specified by the mission science
and engineering team.  This system will automatically
generate a command sequence that will execute within
resource constraints and satisfy flight rules.  Commanding
the rover to achieve mission goals requires significant
knowledge of the rover design, access to the low-level
rover command set, and an understanding of the
performance metrics rating the desirability of alternative
sequences.  It also requires coordination with external
events such as orbiter passes and day/night cycles.  An
automated planning and scheduling system encodes this
knowledge and uses search and reasoning techniques to
automatically generate low-level command sequences
while respecting rover operability constraints, science and
engineering preferences, and also adhering to hard
temporal constraints.  A ground-based interactive planner
combines the power of automated reasoning and conflict
resolution techniques with the insights of the PI to
prioritize and re-prioritize mission goals.

Figure 1 - Mars 2001 Lander

Mars Surveyor Lander
The Mars Surveyor 2001 Lander is scheduled for launch on
April 10, 2001. It will land on Mars on Jan. 22, 2002, if
launched on schedule. The 2001 Lander will carry an
imager to take pictures of the surrounding terrain during
its’ rocket-assisted descent to the surface. The descent-
imaging camera will provide images of the landing site for
geologic analyses, and will aid planning for initial
operations and traverses by the rover. The 2001 Lander
will also be a platform for instruments and technology

experiments designed to provide key insights to decisions
regarding successful and cost-effective human missions to
Mars. Hardware on the Lander will be used for an in-situ
demonstration test of rocket propellant production using
gases in the Martian atmosphere. Other equipment will
characterize the Martian soil properties and surface
radiation environment.  Figure 1 contains a diagram of the
lander and instruments.  The Marie Curie rover will be
deployed using a robotic-arm contained on the lander.

Figure 2 - Marie Curie Rover

The Marie Curie rover is very similar to the Mars
Pathfinder Sojourner rover.  (See Figure 2.)  In fact, it is
the same rover that was used in the Pathfinder test bed
during the mission. (Mishkin et al., 1998; Mishkin 1998)
Additional modifications were made to accommodate the
robotic-arm-based deployment from the 2001 Lander.  In
addition, some minor engineering enhancements were
added.  A description of the rover components is contained
in Table 1.

♦  6-Wheeled robotic vehicle, rocker-bogie mobility
chassis

♦  Mass: 10.5 kilograms

♦  Deployed volume: 65cm (l) by 48cm (w) by 30cm
(h).

♦  Intel 80C85 CPU (~100Kips), 16K PROM, 64K rad
hard RAM, 176K EEPROM, 512K RAM

♦  Forward Black & White stereo cameras, and rear
B&W mono camera

♦  GaAs solar panel (16W peak)

♦  Primary (non-rechargeable) batteries

♦  UHF Radio Modem

♦  Laser stripers for hazard detection

Table 1 - Rover Description
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ASPEN Planning System
Planning and scheduling technology offers considerable
promise in automating rover operations. Planning and
scheduling rover operations involves generating a sequence
of low-level commands from a set of high-level science and
engineering goals.

ASPEN (Fukanaga, et al., 1997; Rabideau, et al., 1999)
is a re-configurable planning and scheduling software
framework that includes the following set of software
components:

♦  An expressive constraint modeling language to
allow the user to define naturally the application
domain

♦  A constraint management system for representing
and maintaining spacecraft operability and resource
constraints, as well as activity requirements

♦  A set of search strategies
♦  A temporal reasoning system for expressing and

maintaining temporal constraints
♦  A graphical user interface for visualizing

plans/schedules

In ASPEN, the main algorithm for automated planning
and scheduling is based on a technique called iterative
repair (Zweben et al., 1994). During iterative repair, the
conflicts in the schedule are detected and addressed one at
a time until no conflicts exist, or a user-defined time limit
has been exceeded. A conflict is a violation of a
reservation, parameter dependency or temporal constraint.
Conflicts can be repaired by means of several predefined
methods. The repair methods are: moving an activity,
adding a new instance of an activity, deleting an activity,
detailing an activity, abstracting an activity, making a
reservation of an activity, canceling a reservation,
connecting a temporal constraint, disconnecting a
constraint, and changing a parameter value. The repair
algorithm may use any of these methods in an attempt to
resolve a conflict. How the algorithm works is largely
dependent on the type of conflict being resolved.

Rover knowledge is encoded in ASPEN under seven
core model classes: activities, parameters, parameter
dependencies, temporal constraints, reservations, resources
and state variables. An activity is an occurrence over a time
interval that in some way affects the rover. It can represent
anything from a high-level goal or request to a low-level
event or command. Activities are the central structures in
ASPEN, and also the most complicated.  Together, these
constructs can be used to define rover procedures, rules
and constraints in order to allow manual or automatic
generation of valid sequences of activities, also called plans
or schedules.

Once the types of activities are defined, specific
instances can be created from the types. Multiple activity
instances created from the same type might have different
parameter values, including the start time. Many camera-
imaging activities, for example, can be created from the

same type but with different image targets and at different
start times. The sequence of activity instances is what
defines the plan.

The flight rules and constraints are defined within the
activities.  The flight rules can be defined as temporal
constraints, resource constraints, or system state
constraints.  Temporal constraints are defined between
activities.  An example would be that the rate sensor must
warm up for two to three minutes before traversing
(moving) the rover.  In ASPEN, this would be modeled
within the "move rover" activity as shown in Figure 3.  The
rate sensor_heat_up is another activity that is presumed to
turn on a rate sensor heater.

Constraints can also be state or resource related.  State
constraints can either require a particular state or change to
a particular state.  Resource constraints can use a particular
amount of a resource.  Resources with a capacity of one are
called atomic resources. ASPEN also uses non-depletable
and depletable resources.  Non-depletable resources are
resources that can used by more than one activity at a time
and do not need to be replenished.  Each activity can use a
different quantity of the resource.  An example would be
the rover solar array power.  Depletable resources are
similar to non-depletable except that their capacity is
diminished after use.  In some cases their capacity can be
replenished (memory capacity) and in other cases it cannot
(battery energy, i.e. non-rechargeable primary batteries).
Resource and state constraints are defined within activities
using the keyword "reservations."  See Figure 3 for an
example.

Figure 3 - ASPEN Modeling Language Example

The job of a planner/scheduler, whether manual or
automated, is to accept high-level goals and generate a set
of low-level activities that satisfy the goals and do not
violate any of the rover flight rules or constraints.  ASPEN
provides a Graphical User Interface (GUI) for manual
generation and/or manipulation of activity sequences.
Figure 4 contains a screen dump of the GUI.

Model Description
The Marie Curie model was built to a level at which all
flight rules and constraints could be implemented.  The
resources include the three cameras, Alpha Proton X-Ray
Spectrometer (APXS), APXS deploy motor, drive motors,
solar  array,  battery,  RAM  usage,  and  EEPROM  usage.

Activity move_rover {
  constraints =
    starts after end_of rate_sensor_heat_up by [2m,3m];
  reservations =
    solar_array_power use 35,
    rate_sensor_state change_to "on",
    target_state must_be "ready";
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Figure 4 - ASPEN GUI

There are 27 different state variables used to track the
status of various devices, modes, and parameters.  Some of
these parameters map directly onto rover internal
parameters and others are related to the ASPEN specific
model.   We are not modeling all rover internal parameters
because many are not useful for automating planning.  We
have defined 162 activities of which 63 decompose directly
into low-level rover commands.

There are several constraints that affect overall
operations of the Marie Curie rover.  These include:

♦  Earth-Mars one-way communications time delay (5-
20 minutes)

♦  Limited communications bandwidth (generally < 10
Mbits downlink per sol available to rover)

♦  Limited communications opportunities (1 command
uplink, 2 telemetry downlinks per sol)

The power system is the single most important resource
for the Marie Curie Rover.  This system consists of a .22
square meter solar array and 9 LiSOCL batteries.  The
batteries on Marie Curie are primarily used during the night
for APXS data collection.  They are primary batteries and
therefore modeled as non-renewable depletable resources.
The solar array is the primary power source used during the
day.  The predicted available solar power profile
throughout the Mars day must be input before planning
begins.  Using a daily model is required due to changing
solar array power available as a result of degradation from
dust accumulation and seasonal solar irradiation variability.

A typical Mars day might involve a subset of the
following activities:

♦  Complete an APXS data collection that was carried
out during the prior night

♦  Capture a rear image of the APXS site
♦  Traverse to an appropriate site and perform a series

of soil mechanics experiments, including several
subframe images of soil mounds and depressions
created by running individual wheel motors

♦  Traverse to a designated rock or soil location
♦  Place the APXS sensor head
♦  Capture end-of-day operations images with its

forward cameras

♦  Begin APXS data collection
♦  Shut down for the night

APXS data collection usually occurs overnight while the
rover is shutdown.  Each of these activities can be input
into ASPEN as a goal for that Mars day planning horizon.
The format of the input goals is RML or Rover Modeling
Language.  RML is an application of Extensible Markup
Language (XML) designed specifically for rover
operations.  RCW will use RML for input and output.
Using a common language between the various operations
tools simplifies the interface between tools.

The exact position of the rover after a traverse activity is
subject to dead reckoning error.  The timing of traverse
activities is also non-determinant. Because of the inherent
problems of coordinating activities between the event-
based rover and time-based lander, wait commands are
used to synchronize activities.  When the lander is imaging
the rover after a traverse, a wait command is used to ensure
the rover will remain stationary at its' destination until the
lander completes imaging.  Because the rover executes
commands serially, this ensures that another command will
not start execution before the previous command has
completed.  All rover traverse goals are generated using the
RCW.  (ASPEN is not designed to generate rover motion
planning.)  The RCW operator can fly a 3-D rover icon
through the stereoscopic display of the Martian terrain. By
inspecting the stereo scene, as well as placing the rover
icon in various positions within the scene, the operator can
assess the trafficability of the terrain. By placing the icon in
the appropriate position and orientation directly over the
stereo image of the actual rover on the surface, the rover's
location and heading are automatically computed.  This
position information is output to ASPEN to set the rover
end position state.  The rover driver specifies the rover's
destinations by designating a series of waypoints in the
scene, generating waypoint traverse commands.  The
traverse commands are only a small fraction of most
command sequences.

Rover data storage is a scarce resource that must be
tracked within the ASPEN model.  The largest consumer of
data storage is the imaging data taking activity. This
activity can fill the on-board data storage if a telemetry
session with the lander is not available during the data
collection.  ASPEN will keep track of the data storage
resource to ensure that all data is downlinked before the
buffer is completely full.

Status
Initial work in 1998 consisted of a preliminary proof of
concept demonstration in which we used automated
planning and scheduling technology integrated with WITS
to demonstrate automated commanding for the Rocky-7
rover from the WITS interface. In 2000, we are providing
an in-depth validation of the automated command-
generation concept.  The ASPEN planning and scheduling
system will be integrated with the WITS rover
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commanding interface and the Rover Control Workstation.
High-level requests will be received through the WITS
interface and ASPEN will automatically generate validated
rover-command sequences that satisfy these requests and
provide those sequences to the Rover Control Workstation.
A Java-based interface will be integrated with the WITS
interface to enable the user to access planned activities and
to observe resource and state constraints. As the enhanced
WITS interface will be Java-based, users will be able to
access this commanding capability from anywhere on the
Internet.  The computation intensive aspects of the
commanding capability (such as the planner/scheduler, path
planner, uncertainty estimation software, vision and image
processing software, etc.) will reside on one or more rover
workstations based in a central location.

The end-to-end data flow for this system is shown in
Figure 5.  The interaction between ASPEN and RCW is an
iterative process.  Both ASPEN and RCW will receive
high-level goals.  RCW will generate initial traverse
commands for input into ASPEN.  ASPEN will merge
these with other goals to produce an intermediate level
plan.  The plan will be output to RCW.  This process will
continue until an acceptable plan is generated.  Finally a
time ordered list of commands will be output for sequence
generation.

Figure 5 - End-to-End Automated Commanding System

The Marie Curie ASPEN model is nearly complete and
ready for testing.  Initial testing on a sample of 136
activities produced a conflict free plan in about 9 seconds.
This testing was completed on a Sun Ultra-2 workstation.
Relatively quick plan cycles will allow the Marie Curie
Rover operations team to perform what-if analysis on
different daily plans.  In addition, the capability could be
used to generate commands more frequently than once-per-
day, if communications opportunities permit.

Our next level of testing will involve generating plans
for two typical Sojourner rover days on Mars.  These plans
will be compared with the manually generated sequences
that were run during the Sojourner mission.  As a result of

these tests, minor updates to the model may be required.   
Once the model is validated, we will integrate ASPEN

with RCW and WITS.  Figure 6 shows a possible Marie
Curie rover uplink operational data flow.  The highlighted
boxes show the planner that would be used at both the
science planning and engineering planning level.  The
planner model would contain sufficient engineering
information to ensure that the vast majority of science
requests finally approved are feasible from an engineering
standpoint.  Eventually we would like to add performance
metrics to the planner model to optimize the generated
plans.  This will enable automated "what-if" analysis to
generate plans that maximize science and engineering
value.

Figure 6 - Possible Rover Uplink Dataflow

Related Work
We are also developing a dynamic, onboard planning
system for rover sequence generation.  The CASPER
(Continuous Activity Scheduling, Planning, Execution and
Re-planning) system (Chien et al., 1999), is a dynamic
extension to ASPEN, which can not only generate rover
command sequences but can also dynamically modify those
sequences in response to changing operating context.
CASPER produces plans by utilizing an iterative repair
algorithm, which classifies plan conflicts and resolves them
by performing one or more plan modifications.  If orbital or
descent imagery is available, CASPER interacts with a
tangent graph path planner to estimate traversal lengths and
to determine intermediate waypoints that are needed to
navigate around known obstacles.

Once a plan has been generated it is continuously
updated during plan execution to correlate with sensor and
other feedback from the environment.  In this way, the
planner is highly responsive to unexpected changes, such as
an unexpected fortuitous event or equipment failure, and
can quickly modify the plan as needed.  For example, if the
rover wheel slippage has caused the position estimate
uncertainty to grow too large, the planner can immediately
command the rover to stop and perform localization earlier
than originally scheduled. Or, if a particular traversal has
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used more battery power than expected, the planner may
need to discard one of the remaining science goals.
CASPER has been integrated with control software from
the JPL Rocky 7 rover (Volpe et al., 2000) and is currently
being tested on Rocky 7 in the JPL Mars Yard.

Conclusions
Current approaches to rover-sequence generation and
validation are largely manual, resulting in an expensive,
labor and knowledge intensive process.  This is an
inefficient use of scarce science-PI and key engineering
staff resources.  Automation as targeted by this system
would automatically generate a constraint and flight rule
checked time ordered list of commands and provides
resource analysis options to enable users to perform more
informative and fast trade-off analyses.   Additionally, this
technology would coordinate sequence development
between science and engineering teams and would thus
help speed up the consensus process.

Enabling goal-driven commanding of planetary rovers
by engineering and science personnel greatly reduces the
workforce requirements for highly skilled rover
engineering personnel. The reduction in team size in turn
greatly reduces mission operations costs.  In addition, goal-
driven commanding permits a faster response to changes in
rover state (e.g., faults) or science discoveries by removing
the time consuming manual sequence validation process,
allowing rapid what-if analyses, and thus reducing overall
cycle times.
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Abstract
This paper describes the application of Artificial Intelligence
planning techniques to the problem of antenna track plan
generation for a NASA Deep Space Communications
Station.  The described system enables an antenna
communications station to automatically respond to a set of
tracking goals by correctly configuring the appropriate
hardware and software to provide the requested
communication services. To perform this task, the
Automated Scheduling and Planning Environment (ASPEN)
has been applied to automatically produce antenna tracking
plans that are tailored to support a set of input goals. In this
paper, we describe the antenna automation problem, the
ASPEN planning and scheduling system, how ASPEN is
used to generate antenna track plans, the results of several
technology demonstrations, and future work utilizing
dynamic planning technology.

INTRODUCTION   
The Deep Space Network (DSN) [4] was established in 1958
and since then it has evolved into the largest and most
sensitive scientific telecommunications and radio
navigation network in the world.  The purpose of the DSN
is to support unmanned interplanetary spacecraft missions
and support radio and radar astronomy observations in the
exploration of the solar system and the universe. The DSN
currently consists of three deep-space communications
facilities placed approximately 120 degrees apart around the
world: at Goldstone, in California's Mojave Desert; near
Madrid, Spain; and near Canberra, Australia. This strategic
placement permits constant observation of spacecraft as
the Earth rotates, and helps to make the DSN the largest
and most sensitive scientific telecommunications system in
the world.  Each DSN complex operates four deep space
stations -- one 70-meter antenna, two 34-meter antennas,
and one 26-meter antenna.  The functions of the DSN are to
receive telemetry signals from spacecraft, transmit
commands that control the spacecraft operating modes,
generate the radio navigation data used to locate and guide
the spacecraft to its destination, and acquire flight radio
science, radio and radar astronomy, very long baseline
interferometry, and geodynamics measurements.
                                                
This NASA Planning and Scheduling workshop paper is a shortened
version of a IAAI-00 paper [7].

From its inception the DSN has been driven by the need to
create increasingly more sensitive telecommunications
devices and better techniques for navigation.  The
operation of the DSN communications complexes requires a
high level of manual interaction with the devices in the
communications link with the spacecraft.  In more recent
times NASA has added some new drivers to the
development of the DSN:  (1) reduce the cost of operating
the DSN, (2) improve the operability, reliability, and
maintainability of the DSN, and (3) prepare for a new era of
space exploration with the New Millennium program:
support small, intelligent spacecraft requiring very few
mission operations personnel [10].

This paper addresses the problem of automated track plan
generation for the DSN, i.e. automatically determining the
necessary actions to set up a communications link between
a deep space antenna and a spacecraft. Similar to many
planning problems, track plan generation involves elements
such as subgoaling to achieve preconditions and
decomposing high-level (abstract) actions into more
detailed sub-actions. However, unlike most classical
planning problems, the problem of track generation is
complicated by the need to reason about issues such as
metric time, DSN resources and equipment states. To
address this problem, we have applied the Automated
Scheduling and Planning Environment (ASPEN) to generate
antenna track plans on demand.

ASPEN [1,9] is a generic planning and scheduling system
being developed at JPL that has been successfully applied
to problems in both spacecraft commanding and
maintenance scheduling and is now being adapted to
generate antenna track plans. ASPEN utilizes techniques
from Artificial Intelligence planning and scheduling to
automatically generate the necessary antenna command
sequence based on input goals. This sequence is produced
by utilizing an "iterative repair" algorithm [9,11,14], which
classifies conflicts and resolves them each individually by
performing one or more plan modifications.  This system
has been adapted to input antenna tracking goals and
automatically produce the required command sequence to
set up the requested communications link.

This work is one element of a far-reaching effort to upgrade
and automate DSN operations. The ASPEN Track Plan
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Generator has been demonstrated in support of the Deep
Space Terminal (DS-T), which is a prototype 34-meter deep
space communications station intended to be capable of
fully autonomous operations [5,6,7].

This rest of this paper is organized in the following manner.
We begin by characterizing the current mode of operations
for the DSN, and then describe the track plan generation
problem. Next, we introduce the ASPEN planning and
scheduling system and describe its modeling language and
search algorithm(s). We then present an operations example
of using this system for track plan generation and discuss
several successful demonstrations that were performed
with Mars Global Surveyor using a 34-meter antenna
station in Goldstone, CA.  Finally, we discuss some related
work and describe current efforts to expand this system to
incorporate a dynamic planning approach which will allow
for closed-loop control and automatic error recovery when
executing a DSN antenna track.

HOW THE DSN OPERATES
The DSN track process occurs daily for dozens of different
NASA spacecraft and projects which use the DSN to
capture spacecraft data.  Though the process of sending
signals from a spacecraft to Earth is conceptually simple, in
reality there are many earthside challenges that must be
addressed before a spacecraft’s signal is acquired and
successfully transformed into useful information.  In the
remainder of this section, we outline some of the steps
involved in providing tracking services and in particular
discuss the problem of track plan generation.
The first step in performing a DSN track is called network
preparation. Here, a project sends a request for the DSN to
track a spacecraft involving specific tracking services (e.g.
downlink, uplink).  The DSN responds to the request by
attempting to schedule the necessary resources (i.e. an
antenna and other shared equipment) needed for the track.
Once an equipment schedule and other necessary
information has been determined, the next step is the data
capture process, which is performed by operations
personnel at the deep space station.  During this process,
operators determine the correct steps to perform the
following tasks: configure the equipment for the track,
perform the actual establishment of the communications
link, and then perform the actual track by issuing control
commands to the various subsystems comprising the link.
Throughout the track the operators continually monitor the
status of the link and handle exceptions (e.g. the receiver
breaks lock with the spacecraft) as they occur.  All of these
actions are currently performed by human operators, who
manually issue tens or hundreds of commands via a
computer keyboard to the link subsystems. This paper
discusses the application of the ASPEN planning system to
automatically generate DSN track plans (i.e. the steps
necessary to set up and perform the requested track) and
dramatically reduce the need for many manual steps.

TRACK PLAN GENERATION: THE
PROBLEM

Generating an antenna track plan involves taking a general
service request (such as telemetry - the downlink of data
from a spacecraft), an antenna knowledge-base (which
provides the information on the requirements of antenna
operation actions), and other project specific information
(such as the spacecraft sequence of events), and then
generating a partially-ordered sequence of commands.
This command sequence will properly configure a
communications link that enables the appropriate
interaction with the spacecraft.  To automate this task, the
ASPEN planning and scheduling system has been applied
to generate antenna operation procedures on demand.

ASPEN has been adapted to use high-level antenna track
information to determine the appropriate steps, parameters
on these steps and ordering constraints on these steps that
will achieve the input track goals.  In generating the
antenna track plan, the planner uses information from
several sources (see Figure 1):

Figure 1  ASPEN Inputs and Outputs

Project Service Request - The service request specifies the
DSN services (e.g. downlink, uplink) requested by the
project and corresponds to the goals or purpose of the
track.

Project SOE - The project sequence of events (SOE) details
spacecraft events occurring during the track - including the
timing of the beginning and ending of the track and
spacecraft data transmission bit rate changes, modulation
index changes, and carrier and subcarrier frequency
changes.

Antenna Operations KB - The Antenna Operations
Knowledge Base (KB) stores information on available
antenna operations actions/commands.  This KB dictates
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how actions can be combined to provide essential
communication services. Specifically, this includes
information such as action preconditions, postconditions,
and command directives and also includes any other
relevant information such as resource and state
descriptions.

Equipment Configuration - This configuration details the
types of equipment available and includes items such as
the antenna, antenna controller, the receiver, etc.

The ASPEN Planning System
ASPEN is a reusable, configurable, generic planning/
scheduling application framework that can be tailored to
specific domains to create conflict-free plans or schedules.

Due to space constraints details on the ASPEN planning
system have been left out in favor of discussion on how
ASPEN has been used in this specific application.  For more
details on ASPEN, see [1,9] and for details on ASPEN’s use
in DSN automation see [5,6,7,8].

TRACK PLAN GENERATION: AN
EXAMPLE

Given a set of tracking requests, ASPEN can generate a
conflict-free track plan within the order of seconds that will
correctly set up the requested communications link.  In
order to begin the planning process, the tracking service
request, the equipment configuration, and the project SOE
are parsed and relevant information is placed in a initial
setup file which lists the requested track goals and any
relevant initial state information.  For example, Figure 3
shows three activity instantiations that request that a
“Pre_track”, “Track” and “Post_track” activity be placed in
the final plan at specific times.

ASPEN then decomposes these activities into the
necessary steps that set up the antenna and subsystems
(i.e. “Pre_track”), that perform the track (i.e. “Track”), and

that perform the necessary shutdown procedures once the
track had ended (i.e. “Post_track”). Other initial state
information is provided in a “Set_state_values” activity,
which sets up the appropriate state variables.  The
information includes the spacecraft ID, antenna ID, the
tracking goals, the carrier and sub-carrier frequency, the
symbol rate, etc.  ASPEN is also provided with the model
files that hold the relevant activity, parameter, resource and
state definitions, which were explained in the previous
section.

Once the initial goals and state information are loaded,
ASPEN utilizes its iterative repair algorithm to create a
conflict-free track plan that provides the requested
services.  This final plan contains a large amount of
information, including a list of grounded activities (where
each activity has been assigned a start time and end time),
and a list of constraints over those activities, including
temporal, parameter, resource and state constraints.
ASPEN also displays the final resource and state timelines
which show the states of those entities over the course of
the plan.  The actual antenna control script that will be used
to execute the track is output in a separate file which
contains the command sequence necessary to set up,

 Pre_track pre_track1{
   Start_time = 1998-213/13:32:26;
   End_time = 1998-213/13:47:26;
 };
 
 Track Track1{
   Start_time = 1998-213/13:47:26;
   End_time = 1998-213/16:40:00;
 };
 
 Post_track post_track1{
   Start_time = 1998-213/16:40:00;
   End_time = 1998-213/16:50:00;
 };
 

Figure 3  Activity  Instantiations

 Configure_equipment:
 
 Start jsc_asn.prc(dss,sc,pass,&ret_status)
 If (!ret_status) then
     Write(“fatal error: cannot start pass”)
     Goto fatal_err
 Endif
 
 Start ugc_hi.prc
 If (!ret_status) then
     Write(“fatal error: can’t control UGC”)
     Goto fatal_err
 Endif
 
 Start apc_hi.prc
 If (!ret_status) then
     Write(“fatal error: can’t control APC”)
     Goto fatal_err
 Endif
 .
 .
 .
 
 Point_antenna:
 
 Ret_status = exec(“APC DCOS”)
 Start apc_track.prc(&ret_status)
 If (!ret_status) then
     Write(“fatal error: cannot point ant”)
     Goto fatal_err
 Endif
 

Figure 4  Antenna Control Script
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control and break down the link. In the model definition, a
command (or set of commands) can be specified for each
defined activity. These commands are then output in the
correct sequence based on the final plan constraints. An
example of this file format is shown in Figure 4. This control
script is then sent to an antenna operator or execution
agent where it will be used to perform the requested track.

DS-T DEMONSTRATIONS
The Deep Space Terminal (DS-T) [5,6,7] being developed at
the NASA Jet Propulsion Laboratory is a prototype 34-
meter deep space communications station intended to be
capable of fully autonomous operations.  When requested
to perform a track, the DS-T station automatically performs
a number of tasks (at appropriate times) required to execute
the track.  First, the Schedule Executive sets up the track
schedule for execution and provides the means for
automated rescheduling and/or manual schedule editing in
the event of changes.  The Configuration Engine is then
responsible for retrieving all the necessary data needed for
station operations.  Next, the Script Generator (ASPEN)
generates the necessary command sequence to perform the
track.  Finally, a Station Monitor and Control process
executes the generated script and records relevant monitor
data generated during the track.

The DS-T concept was validated through a number of
demonstrations.  The demonstrations began with the
automation of partial tracks in April 1998, continued with 1-
day unattended operations in May, and concluded with a 6-
day autonomous “lights-out” demonstration in September
1998.  Throughout these demonstrations ASPEN was used
to automatically generate the necessary command
sequences for a series of Mars Global Surveyor (MGS)
downlink tracks using the equipment configuration at Deep
Space Station 26 (DSS26), a 34-meter antenna located in
Goldstone, CA. These command sequences were produced
and executed in a fully autonomous fashion with no human
intervention.  During the September demonstration
performed all Mars Global Surveyor coverage scheduled for
the Goldstone antenna complex.  This corresponded to
roughly 13 hours of continuous track coverage per day.

In Figure 5, we show a picture of the three 34-meter Beam
Wave Guide (BWG) antennas at the Goldstone, CA facility.
In the foreground is DSS-26, which was the station selected
for prototyping the DS-T.

While the overall DS-T effort consisted of a large team and
a project duration of approximately 1.5 years, the DS-T
automation team consisted of three team members.  Of this
teams work, approximately one work year was spent on the
script generation effort.  This effort primarily consisted of
knowledge acquisition and model development, while a
small effort was made in the integration of the script
generator.  A key factor in the quick development was the
ability to adapt a general purpose planning and scheduling
system.  As the domain of ground communication-station
commanding shared many similarities to spacecraft
commanding, ASPEN seemed like a logical choice.  This
was confirmed by the ease of knowledge base development
and integration.  Spacecraft commanding also consists of
generating a sequence of commands, however it is
predominately a resource-scheduling problem, whereas
ground-station commanding is predominately a sequencing
problem.

RESULTS
In order to provide qualitative results, we present statistical
data from September 16, 1998, a representative day during
our 6-day autonomous unattended demonstration, durring
which we collected above 90% of the transmitted frames.
This performance is on par with the operator-controlled
stations, however required no support personnel (i.e.
reduced operations cost).

In figure 6, the graph represents when MGS was in view of
the ground stations at each of the three complexes (Madrid,
Goldstone, and Canberra).  DS-T, which is located at
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Goldstone, tracked MGS through the five track segments
indicated in the figure 6.

Before continuing with the analysis of the results, let us
explain the different modes indicated in figure 6 for each of
the different track segments.  When a spacecraft is
downlinking data it is said to be in 1way mode.  When an
uplink and a downlink are taking place simultaneously the
spacecraft is said to be in 2way mode.  If a station is
communicating in 2way mode with a spacecraft, and
another station is listening in on the downlink of the
spacecraft, the second station is said to be in 3way with the
2way station.  Because DS-T is not equipped for uplink ,
DS-T operates in either 1way or 3way mode.  Because the
downlink frequency is relative to the uplink frequency, it is
critical to determine the station involved in the uplink when
taking part in a 3way mode of operations.  In this example,
during segment 4 dss25 (deep space station) was in 2way
and DS-T was in 3way with 25 (3way/25).

Track segment 2, which is labeled LOS, indicates that there
was a scheduled loss of signal (LOS) so during this
segment no frames were collected.  During each of the other
respective track segment DS-T collected 75%, 91%, 96%,
90%, 23% of the broadcasted frames.  As shown by the
graph, during segment 1 and 6 the elevation of the dish is
low in the sky.  Under these circumstances there is
considerably more atmospheric interference which explains
the lower percent of frame collection.  On the other hand, if
you look at segment 4 where there is a long segment with
the spacecraft high in the sky the data collection is quite
high.  In segment 3 and 5 the values are a little lower due to
the shortness of the segments.  This is explained by the
fact that some data is lost during a change in mode, as in
the transition from LOS to 1way and 3way/25 to 1way.

As a component of the DS-T demonstrations, the SG
performed flawlessly, producing dynamically instantiated
control scripts based on the desired service goals for the
communications pass as specified in the service request.
The use of such technology resulted in a three primary
benefits:
• Autonomous operations enabled by eliminating the need

for hundreds of manual inputs in the form of control
directives.  Currently the task of creating the
communications link is a manual and time-consuming
process which requires operator input of approximately
700 control directives and the constant monitoring of
several dozen displays to determine the exact execution
status of the system.

• Reduced the level of expertise of an operator required to
perform a communication track.  Currently the complex
process requires a high level of expertise from the
operator, but through the development of the KB by a
domain expert this expertise is captured with in the
system itself.

• The KB provides a declarative representation of
operation procedures.  Through the capture of this

expertise the KB documents the procedural steps of
performing antenna communication services.

RELATED WORK
There are a number of existing systems built to solve real-
world planning or scheduling problems [12,13,14].  The
problem of track plan generation combines elements from
both these fields and thus traditional planners and
schedulers cannot be directly applied.  First, many classical
planning elements must be addressed in this application
such as subgoaling to achieve activity preconditions (e.g.
the antenna must be "on_point" to lock up the receiver)
and decomposing higher-level (abstract) activities into
more detailed sub-activities. In addition, many scheduling
elements are presents such as handling metric time and
temporal constraints, and representing and reasoning about
resources (e.g. receiver, antenna controller) and states (e.g.
antenna position, subcarrier frequency, etc.) over time.

One other system has been designed to generate antenna
track plans, the Deep Space Network Antenna Operations
Planner (DPLAN) [2].  DPLAN utilizes a combination of AI
hierarchical-task network (HTN) and operator-based
planning techniques.  Unlike DPLAN, ASPEN has a
temporal reasoning system for expressing and maintaining
temporal constraints and also has the capability for
representing and reasoning about different types of
resources and states. ASPEN can utilize different search
algorithms such as constructive and repair-based
algorithms, where DPLAN uses a standard best-first based
search. And, as described in the next section, ASPEN is
currently being extended to perform dynamic planning for
closed-loop error recovery, where DPLAN has only limited
replanning capabilities.

FUTURE WORK: PROVIDING CLOSED-
LOOP CONTROL THROUGH DYNAMIC

PLANNING
Currently, we are working on modifying and extending the
current ASPEN Track Plan Generator to provide a Closed
Loop Execution and Recovery system (CLEaR) for DSN
track automation [8].  CLEaR is a real-time planning system
built as an extension to ASPEN [3].  The approach taken is
to dynamically feed monitor data (sensor updates) back
into the planning system as state updates.  As these
dynamic updates come in, the planning system verifies the
validity of the current plan.  If a violation is found in the
plan, the system will perform local modification to construct
a new valid plan.  Through this continual planning
approach, the plan is disrupted as little as possible and the
system is much more responsive and reactive to changes in
the real (dynamic) world.

This CLEaR effort is also being integrated with a Fault
Detection, Isolation and Recovery (FDIR) system.  FDIR is
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an expert system providing monitor data analysis.  As is
often the case with large complex systems, monitor (sensor)
data is often related in different ways that becomes difficult
for a human to detect.  The advantage of combining these
two systems is that FDIR can first interpret the vast amount
of data and summarize it into a set of meaningful values for
a planning system to react to.  We think of this union as
intelligent analysis and intelligent response, much like a
careful design and implementation; one without the other is
of little use.

CONCLUSIONS
This paper has described an application of the ASPEN
automated planning system for antenna track plan
generation.  ASPEN utilizes a knowledge base of
information on tracking activity requirements and a
combination of Artificial Intelligence planning and
scheduling techniques to generate antenna track plans that
will correctly setup a communications link with spacecraft.
We also described several demonstrations that have been
performed as part of the DS-T architecture where ASPEN
was used to generate plans for downlink tracks with Mars
Global Surveyor.  Finally, we described a planned extension
of this system, which will allow for closed-loop control,
error recovery and fault detection using dynamic planning
techniques.
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Abstract

This paper presents a method for using expected util-
ity distributions in the execution of flexible, contingent
plans. A utility distribution maps the possible start
times of an action to the expected utility of the plan
suffix starting with that action. The contingent plan
encodes a tree of possible courses of action and in-
cludes flexible temporal constraints and resource con-
straints. When execution reaches a branch point, the
eligible option with the highest expected utility at that
point in time is selected. The utility distributions
make this selection sensitive to the runtime context,
yet still efficient. Our approach uses predictions of
action duration uncertainty as well as expectations of
resource usage and availability to determine when an
action can execute and with what probability. Exe-
cution windows and probabilities inevitably change as
execution proceeds, but such changes do not invali-
date the cached utility distributions; thus, dynamic
updating of utility information is minimized.

Introduction
The work reported here is part of a research program to
develop robust, autonomous planetary rovers (Wash-
ington, et al., 1999). Traditionally, spacecraft have
been controlled through a time-stamped sequence of
commands (Mishkin, et al., 1998). The rigidity of this
approach presents particular problems for rovers: since
rovers interact with their environment in complex and
unpredictable ways and since the environment is un-
known or poorly modeled, the rover’s actions are highly
uncertain. We have developed a temporally flexible,
contingent planning language, which enables the spec-
ification of rover actions that can adapt to the chang-
ing execution situation. The plan language is called
the Contingent Rover Language or CRL (Bresina, et
al., 1999). CRL allows a rich specification of precondi-
tions, maintenance conditions, and end conditions for
actions. These conditions can include absolute and rel-
ative temporal constraints, resource constraints (e.g.,
power), as well as constraints on the rover’s state.

∗NASA Ames contractor with Caelum Research Corp.

A contingent plan is a tree of possible courses of
action; when execution reaches a branch point, the
rover’s on-board executive selects the eligible option
with the highest expected utility. If all the actions were
time-stamped, then it would suffice to precompute the
expected utility for each contingent option, using clas-
sical decision theory. However, because the actions in a
CRL plan can start within a flexible temporal interval,
the expected utilities of the contingent options depend
on the time that the branch point is reached during
execution. Hence, a single utility measure is insuffi-
cient, and we need to compute a utility distribution
that maps possible action start times to the expected
plan-suffix utility, i.e., the expected utility of executing
the plan suffix starting with that action.

Expected plan-suffix utility depends on when actions
can execute and with what probability. The time over
which an action executes and the probabilities of suc-
cess and failure are affected by all the constraints in
the action’s conditions (pre-, maintain, and end), as
well as by the inherent uncertainty in action durations.
As plan execution proceeds, the temporal windows for
plan actions narrow, resource availability can change,
and rover state can change in unpredictable ways. Such
changes affect the execution time and success proba-
bilities and, thus, the expected utilities. Note, how-
ever, that even though temporal changes can affect
the probabilities of when future actions will start, the
plan-suffix utility distributions of these actions do not
have to be recomputed because they are conditioned
on start time. Although the use of utility distributions
does reduce utility recomputations, it does not elim-
inate them; e.g., changes in resource availability can
require dynamic utility updates.

In contrast to classical decision-theoretic frame-
works, the uncertainty arises from an interaction of ac-
tion conditions and execution time, which is uncertain
because of variations in action durations. Modeling
this with decision-theoretic tools would require cover-
ing the spaces of possible action times and available re-
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sources. Thus, a decision-theoretic planning approach
that a priori considers all possible decision points and
pre-compiles an optimal policy is not practical.

In this paper, we present an approach for estimating
the expected plan-suffix utility distribution in order to
make runtime decisions regarding the best course of
action to follow within a flexible, contingent plan. Our
method takes into account the impact of temporal and
resource constraints on possible execution trajectories
and associated probabilities by using predictions of ac-
tion duration uncertainty and expectations of resource
usage and availability.

Plan-Suffix Utility Distributions

The utility of a plan depends on the time that each ac-
tion starts, when it can execute, and its constraints. In
CRL, an action may be constrained to execute within
an interval of time, specified either in relative or abso-
lute terms. In a plan with this type of temporal flexibil-
ity, the exact moment that a future action will execute
cannot, in general, be predicted. We use a probability
density function (PDF) to represent the probability of
an action starting (or executing, or ending) at a partic-
ular time. The focus of this paper is on the ability to
estimate the expected utility of a sequence of actions
by propagating these PDFs from action to action. The
propagation uses the temporal and resource conditions
of the action to restrict the action’s execution times.

The plan-suffix utility of an action is a mapping from
times to values: u(S, t) is the utility of starting execu-
tion of a plan suffix S at time t. The terminal case is
u({}, t) = 0. For a plan {a, S}, denoting action a fol-
lowed by the plan suffix S, there are two cases, depend-
ing on whether failure of a causes general plan failure
or not. Let us denote psuccess(t

′|a, t) as the probabil-
ity of success of a at time t′ given that it started at
time t, pfailure(t

′|a, t) as the probability of a’s failure
at time t′, and va as the fixed local reward for success-
fully executing action a. If the plan fails when a fails,

u({a, S}, t) =

∫ ∞
−∞

psuccess(t
′|a, t) · (va + u(S, t′)) dt′

If the plan continues execution when a fails,

u({a, S}, t) =
∫∞
−∞ [ psuccess(t

′|a, t) · (va + u(S, t′)) +

pfailure(t
′|a, t) · u(S, t′) ] dt′

In the case of a branch point b with possible suffixes
Sb = {S1, ...Sn}, the plan-suffix utility u({b,Sb}, t) is
a function of the utilities of each possible suffix:

u({b,Sb}, t) =
∑
Si∈Sb

∫ ∞
−∞

pselect(Si, t) · u(Si, t)dt

where pselect(Si, t) is the probability of suffix Si being
selected at time t (0 if the eligibility condition is un-
satisfied). This is an average of the individual suffix
utilities, weighted by the selection probabilities.

Given a planning language with a rich set of tem-
poral, resource, and state conditions, the functions
psuccess and pfailure do not allow closed-form calcu-
lation of the plan-suffix utilities. We solve this by dis-
cretizing time into bins; the value assigned to a bin
approximates the integral over a subinterval. Calcula-
tions of the integrals above become summations. The
choice of bin size introduces a tradeoff between accu-
racy and computation cost, which we examine in the
section Empirical Results.

Although the utility calculation is defined with re-
spect to an infinite time window, the plan start time,
action durations, and action conditions restrict the
possible times for action execution and for transitions
between actions. In this work we model only temporal
and resource conditions; the time bounds we compute
may be larger than the real temporal bounds because
of the unmodeled conditions.

The basic approach is to propagate the temporal
bounds forward in time throughout the plan, produc-
ing the temporal bounds for action execution. Those
temporal bounds serve as the ranges over which the
utility calculations are performed. Outside of these
ranges, the plan fails. A failed plan receives the local
utility of the actions that succeeded and zero utility
for the remainder; failure could be penalized through
a simple extension.

The temporal bounds are calculated forward in time
because the current time provides the fixed point that
restricts relative temporal bounds. The utilities, on
the other hand, are calculated backward in time from
the end(s) of the plan. The utility estimates are condi-
tioned on the time of transitioning to an action; since
they are not dependent on preceding action time PDFs,
they remain valid as plan execution advances, barring
changes in resource availability.

In the following sections, we describe the elements of
an action and present the procedures for propagating
temporal bounds and utilities in more detail.

Anatomy of an Action

In the Contingent Rover Language, each action in-
stance includes the following information:

Start conditions. Conditions that must be true
for the action to start execution.

Wait-for conditions. A subset of the start con-
ditions for which execution can be delayed to wait for
them to become true (by default, unsatisfied start con-
ditions fail the action). Temporal start conditions are
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treated as wait-for conditions, and may be absolute or
relative to the previous action’s end time.

Maintain conditions. Conditions that must be
true throughout action execution. Failure of a main-
tain condition results in action failure.

End conditions. Conditions that must be true at
the end of action execution. Temporal end conditions
may be absolute or relative to action start time.

Duration. Action duration expressed as an expec-
tation with a mean and standard deviation of a Gaus-
sian distribution. Our approach would work equally
well with other models of action duration.

Resource consumption. The amount of resources
that the action will consume. It is expressed as an
expectation with a fixed value, because we currently
assume that resource consumption for a given action
is a fixed quantity with no uncertainty.

Continue-on-failure flag. An indication of
whether a failure of the action aborts the plan or allows
execution to continue to the next action.

Resource conditions considered here are threshold
conditions; i.e., they ensure that enough of a given
resource exists for the action to execute. The re-
source profile is an expectation of resource availability
over time, represented by a set of temporal intervals
with associated resource levels. A resource condition
is checked against the availability profile to determine
the intervals over which the condition is satisfied.

Temporal Interval Propagation

Each temporal aspect of an action is represented as a
set of temporal intervals, and we distinguish the fol-
lowing temporal aspects of an action.

Transition time. The time that the execution of
the previous action terminates. This is not the same as
start time, since the action’s preconditions may delay
its execution. The transition-time intervals are the set
of possible times that the previous action will transi-
tion to this action.

Start time. The time that the action’s precondi-
tions are met and it executes. The start-time intervals
are the set of possible times that the action will start.

End time. The time at which the action termi-
nates. We distinguish between successful termination
and failure, due to condition violation, and determine
a set of end-succeed intervals and end-fail intervals.

Execution proceeds according to the following steps:
1. If the current time is already past absolute start

bounds, fail this action.
2. Execution waits until all wait-for and lower-

bound temporal conditions are true (but if upper-
bound temporal conditions are violated at any time,
the action fails).

3. The start conditions are checked, and the action
fails if any are not true.

4. The action begins execution. If any maintenance
conditions fail during execution, the action fails. If the
temporal upper bound is exceeded, the action fails.

5. The action ends execution. The end conditions
are checked, and the action fails if any are not true.

6. Execution transitions to the next action.
As mentioned earlier, action failure either fails the

plan or simply transitions to the next action, as spec-
ified within the plan (the continue-on-failure flag).

Temporal bounds and utilities are propagated to re-
flect the execution steps. We illustrate the temporal
interval propagation by demonstrating how the vari-
ous conditions affect an arbitrary transition-time PDF.
The interval propagation is done simply through com-
putations on the bounds, but since the utility compu-
tations propagate PDFs, the general case demonstrates
the basics underlying both calculations.

Transition time

The possible transition times of the plan’s first action
is when plan execution starts; typically, this is a single
time point (e.g., the set time that the rover “wakes
up”). For all other actions, the transition time PDF is
determined from the previous action’s end time PDFs,
as follows. If the previous action’s continue-on-failure
flag is true, then the possible action transition times
are the union of the possible end-succeed times and the
end-fail times from the previous action. On the other
hand, if the previous action’s continue-on-failure flag
is false, then the action’s transition times are identical
to the previous action’s end-succeed times.

Start time

Given the possible transition times and a model of re-
source availability, we determine the set of temporal
intervals that describes the possible action start times,
along with a set of temporal intervals during which the
action will fail before execution begins.

Consider an action with absolute time bounds
[lbabs, ubabs] (default [0,∞]) and relative temporal
bounds [lbrel, ubrel] (default [0,∞])1. Consider also
resource wait-for conditions Rwait and resource start
conditions Rstart. For a given resource availability pro-
file, each resource condition r corresponds to a set of
time intervals Ifalse(r) for which the resource condi-
tion is not true. We define the set of wait intervals:

Iwait = [−∞, lbabs] ∪
⋃

r∈Rwait

Ifalse(r).

1In practice, a finite planning horizon bounds the abso-
lute and relative time bounds; it also bounds the probabil-
ity reallocation for unmodeled wait-for conditions.
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We define the set of fail intervals:

Ifail = [ubabs,∞] ∪
⋃

r∈Rstart

Ifalse(r).

The following rules partition the space of time; they
are used to identify the possible start times and the
possible fail times, given the conditions. In the rules,
t is a given transition time.

1. If t > ubabs, then the action fails at time t.
2. Else, if t + lbrel > ubabs, then the action fails at

time ubabs.
3. Else, if t+lbrel is within a wait interval Iwaiti , and

the upper bound of the wait interval ubwait is such that
ubwait − t > ubrel or ubwait > ubabs, then the action
fails at time min(t+ ubrel, ubabs).

4. Else, if t + lbrel is within a wait interval Iwaiti ,
and the upper bound of the wait interval ubwait is such
that ubwait−t ≤ ubrel, then the action waits until time
ubwait. If ubwait falls within a fail interval, then the
action fails at time ubwait. Otherwise the action starts
at time ubwait.

5. Else, if t+ lbrel is not within a wait interval Iwaiti ,
and t+ lbrel falls within a fail interval, then the action
fails at time t+ lbrel.

6. Finally, if none of the preceding conditions hold,
then the action starts at time t+ lbrel.

If all of the conditions could be accurately modeled,
then a transition time would map to a single start time.
However, as mentioned earlier, we currently model only
temporal and resource conditions. The set of unmod-
eled conditions adds uncertainty about the time inter-
vals over which the sets of conditions will be true. For
start conditions, this adds a fixed probability of failure
to every time point. For wait-for conditions, unsatis-
fied preconditions move probability mass later; to re-
flect this, we subtract a proportion α of the probability
density at each time point and allocate it uniformly to
each time later within the absolute bounds; after this,
the rules above apply for the modeled conditions.

End time

Here we consider how end times are calculated for an
action that has its start conditions true and has started
execution. The successful end time of an action is de-
termined by its start time, duration, maintenance con-
ditions, and end conditions. Without maintenance or
end conditions, the end time PDF is determined by
convolving the start time and duration PDFs; for the
bounds, each start time interval [lbstart, ubstart] and
duration interval [lbdur, ubdur] yields an end time inter-
val [lbstart + lbdur, ubstart + ubdur].

2 All such intervals
are unioned to yield the possible end times.

2To bound the duration interval, we truncate the normal
distribution at ±2 standard deviations and at 0 and then

Maintenance conditions restrict the possible end
times by defining valid execution time intervals; if ex-
ecution exits a valid interval, the action fails. End
conditions further restrict the successful times; if ex-
ecution ends when an end condition is not true, the
action will fail. The temporal end upper bounds are
treated as maintenance conditions so that action exe-
cution is bounded.

An action will succeed only if the following four con-
ditions are met:

1. It successfully begins execution.

2. Its start time falls within a valid execution inter-
val. If not, the action will fail at that start time.

3. Its duration is such that its end time falls within
the same valid execution interval. If not, the action
will fail at the end of this execution interval.

4. The end time falls within a valid end interval. If
not, the action fails at the end time.

Utility Propagation

Utility propagation follows the same basic rules as
temporal interval propagation in terms of the effects
of conditions, but it is calculated during a sweep back
from the terminal actions of the plan tree. A terminal
action in the plan tree has an empty plan suffix of
utility 0. The plan-suffix utility is conditioned on the
start time of the action: we calculate the utility of an
action and its successors given a particular transition
time. The plan-suffix utility composed with a PDF
of possible transition times to this action yields the
expected utility of the plan suffix starting with this
action over the time distribution given by the PDF.
Caching the utility conditioned on start times allows an
efficient means of choosing the highest utility eligible
contingent option.

An action’s plan-suffix utility for a given transition
time is computed as follows. First, the transition time
is propagated to a discrete start time PDF according
to the above rules for start time propagation. Second,
the convolution of the start time PDF and duration
PDF is computed to produce the PDFs for successful
end times and failed end times according to the above
rules for end time propagation. Third, the success end
time PDF is composed with the local value and the
plan-suffix utility of the next action to produce the
plan-suffix utility for the given transition time. If the
action’s continue-on-failure flag is set, the failure end
time PDF is also composed with the plan-suffix utility
of the next action and added to the utility computed
from the end time.

normalize the remaining distribution.
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Figure 1: Example contingent rover plan. The (µ, σ) above an action indicate the duration’s mean and standard
deviation. Important start time constraints are shown in square brackets below the arrows. The local value, if
nonzero, of an action is indicated below it; these values are assigned by the scientists. For a plan start time of 700,
each action’s plan-suffix utility distribution is plotted above it; all have x-range [955, 1605] and y-range [0, 210].
The leftmost plot is the utility of the branch point. The utility of the entire plan is 52.2. The resource availability
profile has x-range [955, 1605] and a resource dip over [1000, 1025].

Empirical Results

To demonstrate our approach, we use a small plan ex-
ample, which is shown in Figure 1. The plan consists
of an initial traversal and then a branch point with the
following three contingent options: (i) travel toward a
farther, but more important science target, capture its
image, and communicate the image and telemetry, (ii)
travel toward a nearer, but less important science tar-
get, snap its image, and communicate the image and
telemetry, or (iii) communicate telemetry.

The communication must start within the interval
[1600, 1610]. If communication does not happen, then
all data is lost; hence, it has a high local value (higher
for more important data). Thus, the primary determi-
nant of which option has the highest expected utility is
whether there is enough time to execute the communi-
cation action. The duration uncertainty of the actions
affects the probabilities of successfully completing each
of the contingent options and, hence, affects the ex-
pected utility. The time that plan execution starts
also affects these probabilities and utilities. For the
case shown, the start time (700) falls at a time when

the first branch of the plan is likely to fail, as is clearly
shown by the plan-suffix utility distributions in the fig-
ure. In addition, the power availability profile is such
that it prevents motion over a small range of time; this
is also reflected in the utility distributions.

The principal question that can be tested experimen-
tally concerns the accuracy of the discrete propagation
and the tradeoff of discrete bin size versus accuracy.
To illustrate these experimentally, we use our example
plan and a plan start time of 700 (as shown in Fig-
ure 1) and compare the utility of the entire plan when
computed using bin sizes of 0.5, 1, 2, 5, 10, 20, 50,
and 100; we also estimate the exact plan utility with a
100,000 trial Monte Carlo stochastic simulation. The
results are shown in Figure 2. The results show in-
creasing accuracy with decreasing bin size; the largest
error is still less than 12%.

Concluding Remarks

In this paper, we presented expected plan-suffix utility
distributions, described a method for estimating them
within the context of flexible, contingent plans, and
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Carlo simulation. Note that the x-axis is log scale.

discussed their use for runtime decisions regarding the
best course of action to take.

The approach presented in this paper attempts to
minimize runtime recomputation of utility estimates.
Narrowing the transition intervals of an action does not
invalidate its utility distributions. Resource availabil-
ity changes may affect the times over which an action’s
conditions are true and, thus, the probability distribu-
tion of successful execution. The plan-suffix utility of
all actions before an affected action will need to be up-
dated. Actions later than an affected action only need
to be updated at newly enabled times.

In contrast to standard decision-theoretic frame-
works (Pearl, 1988), uncertainty arises from an inter-
action of action conditions with an execution time of
uncertain duration. Decision-theoretic tools would re-
quire covering the spaces of possible action times and
available resources; thus, a decision-theoretic planning
approach that considers all possible decision points and
pre-compiles an optimal policy is not practical.

An earlier effort that propagated temporal PDFs
over a plan is Just-In-Case (JIC) scheduling of Drum-
mond, et al. (1994). The purpose was to calculate
schedule break probabilities due to duration uncer-
tainty. Unlike our rich set of action conditions, the only
action constraint in the reported telescope scheduling
application was a start time interval. JIC used the sim-
plifying assumption that start time and duration PDFs
were uniform distributions and that convolution pro-
duced a uniform distribution. Our discretized method
is more statistically valid and could be used in JIC to
increase the accuracy of its break predictions.

An alternative approach to utility estimation is to
use Monte Carlo simulation on board, choosing dura-
tions and eligible options according to their estimated
probabilities. The advantage of simulation is that it
is not subject to discretization errors. On the other
hand, a large number of samples may be necessary to
yield a good estimate of plan utility; furthermore, the
length of the calculation is data-dependent (e.g., to

reach a particular confidence level). We consider such
an approach to be impractical for on-board use, given
the computational limitations of a rover.

A number of issues are raised by this approach, and
some remain for future work. The combination of plan-
suffix utilities at branch points depends on the proba-
bility of choosing each sub-branch at each time. Given
unmodeled conditions, this can only be estimated, but
an interpretation of the conditions on each of the sub-
branches can be performed to determine the expected
probability of that sub-branch being eligible. If there
are times for which more than one sub-branch is poten-
tially eligible, then the resulting utility is some combi-
nation of the utility of each sub-branch at that time.

The use of discrete bins in calculating utility intro-
duces error into the calculation; the probabilities and
utilities of a precise time point are diffused over sur-
rounding time points. As the chain of actions becomes
longer, the inaccuracies grow. Smaller bin sizes mini-
mize the error; however, the utility calculation is in the
worst case O(n3) for n bins. This tradeoff of accuracy
versus computation time requires further study. Bin
size could be scaled with the depth of the action in the
plan, but this would require frequent recalculations as
execution progressed through the plan.

Our approach can be extended by making more real-
istic modeling assumptions; e.g., modeling uncertainty
in resource consumption and modeling hardware fail-
ures. One possible next step is to introduce limited
plan revision capabilities into the plan to handle cases
where all possible plans are of low utility and are thus
undesirable. Another extension would be to introduce
additional sensing actions to disambiguate multiple el-
igible options with similar utility estimates.
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Abstract

Scheduling access to Air Force satellites is an over-
constrained problem. Over 500 requests for access are
received for each day's operation; after manual schedul-
ing, over 100 conicts typically remain in the schedule.
We are developing a prototype scheduling system that
will assist human schedulers in this problem. Auto-
mated scheduling promises to reduce the number of
conicts, but will never remove all of them. Thus, the
system will allow the human schedulers to examine al-
ternative schedules so that they can better negotiate
changes with the users.

Introduction

The prevalent view of scheduling is that of automati-
cally constructing the optimal or best solution to a sin-
gle problem instance on a single objective. While this
view works, more or less, for commonly studied schedul-
ing problems such as static job-shop, it breaks down
in applications that operate continuously, receive re-
quests asynchronously, trade-o� between multiple usu-
ally competing objectives or require judgment about
priorities.
Our application, scheduling access to remote satellite

tracking stations (RSTS), possesses all four character-
istics. The tracking stations operate 24 hours each day
with emergency requests arriving at any time, and the
demand outpaces the available resources. This neces-
sitates tough decisions about which accesses are most
important and whether some accesses can be partially
accommodated.
In a recently initiated project, we are developing a

prototype system to assist human schedulers in con-
structing schedules for the RSTS application. Sev-
eral key issues must be resolved. Which scheduling
algorithms and heuristics are best suited to this over-
constrained problem? How can automated scheduling
best function for dynamic scheduling over variable in-
tervals? What objective function(s) match the require-
ments of the application and of the algorithms for au-
tomating the process? How a mixed-initiative schedul-
ing system can improve the eÆciency of the process
and solutions? Although all of these issues need to be
resolved ultimately, in this paper, we briey touch on

the �rst question and focus primarily on the last issue
by describing our methodology and design for a mixed-
initiative system for RSTS scheduling.

RSTS Application

In the Air Force Satellite Control Network, Remote
Tracking Stations provide the satellite-to-ground inter-
face necessary for satellite command and control opera-
tions. Remote Tracking Stations are located at nine (9)
sites with 16 antennas. The stations are placed so as to
maximize area coverage and multiple support capabil-
ity. Time on the various Remote Tracking Stations is a
scheduled resource.
Scheduling is carried out by one of two Resource

Control Complexes (RCCs), located at the Schriever
Air Force Base (AFB) and the Onizuka AFB. Approxi-
mately 520 resource requests must be scheduled for each
day of operations at Schriever.
Because the resources are scarce, requests may in-

clude backup time and resource speci�cations and may
be subject to later negotiation. Thus, a client's request
consists of a primary desired time window on a partic-
ular Remote Tracking Station, the amount of time re-
quired, the priority of the request and optionally, alter-
native time windows and resources. (Alternatives may
also be determined automatically based on the avail-
ability of duplicate or similar resources and capabili-
ties.)
Attempts to automate these tasks have either failed,

or have yielded dubious results. One of the primary
barriers to successful automation has been the need to
keep the human schedulers in the loop; to create a feasi-
ble schedule, the human scheduler often must negotiate
changes with the clients. However, the human sched-
ulers are currently still doing the entire task manually;
only schedule entry, storage and display have been com-
puterized. It can take a human one to two years to learn
to schedule Satellite Remote Tracking Station requests
at an expert level.
Currently, a one day schedule is built manually by

human experts over a one week period. On any given
day, the schedulers manage seven sliding windows rep-
resenting the next seven days of activity. During the
course of a week, the schedule is gradually determined
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and frozen, except for high priority, emergency requests
which may arrive at any time and must be included.

Mixed-Initiative Scheduling in RSTS

Shortening the scheduling window of RSTS from one
week down to two or three days would mean managing
fewer active scheduling windows at any point in time.
In addition, shortening the scheduling time is also de-
sirable because high priority requests may arrive late,
causing disruption to the overall schedule.
Automation can help reduce the scheduling window,

but by itself, automation is not the complete solution.
If two requests require exactly the same resource at the
same time, and there is no alternative way to satisfy
both requests, then there is no feasible solution. Even
when there are alternative ways to satisfy a request,
contention for resources covering global \hot spots"
may still preclude satisfying all requests. Human in-
tervention is generally required to adjust the objectives
of the schedule, to arbitrate what requests to abandon
or to negotiate alternatives o�-line. Emergency or ex-
tremely high priority requests for satellite time may
also arrive in the last 24 hours before a schedule is
to be deployed. This creates a need for fast schedule
repair. What the automated part can do best is to an-
ticipate problems and to provide the human scheduler
with promising alternative schedules allowing him/her
to dictate trade- o�s in objectives and request satisfac-
tion.
Thus, the system must support fast schedule pro-

posal, schedule visualization, rapid consideration of al-
ternatives and on-line editing for new requests. We are
developing a system that has a suite of algorithms and
heuristics for building schedules integrated with a visu-
alization tool for examining and manipulating proposed
schedules.

Algorithms for RSTS Scheduling

Scheduling of remote tracking stations is a constraint
satisfaction problem in which no conict-free solution
exists and yet some solution must be generated. Of-
ten, in scheduling applications, an attempt is made to
turn this kind of constraint satisfaction problem into
a combinatorial optimization problem: a weighting is
used to indicate which constraints are more important{
and then an optimization routine is run to minimize the
weighted set of violated constraints.
Search and combinatorial optimization methods are

not enough to support a �elded system for resource
scheduling. The combinatorial optimization approach
has several problems in real world applications. First,
it may be diÆcult or impossible to impose a meaning-
ful weighting. Tuning a linear set of weights so that the
weighted evaluation function reects the same kinds of
(possibly nonlinear) relative evaluations made by a hu-
man expert can be extremely diÆcult. Second, all the
information needed to resolve a scheduling conict may
not be available to the automated scheduling system. In

this case, it is impossible to build an evaluation function
that captures the scheduling abilities of the human ex-
pert. For example, clients requesting a resource tend
to make their request the highest allowable priority,
so that priority information is less accurate and use-
ful than one might expect. Given two requests of equal
priority, an automated system may give both requests
70 percent of the requested time in order to minimize
an objective function. This may not at all be the kind
of compromise that is appropriate.
Our approach to developing the automated portion of

this system is to start by studying well known schedul-
ing approaches as applied to this problem. We think it
likely that several scheduling algorithms will ultimately
be incorporated to support di�erent trade-o�s between
quality of solution and time required to obtain it. We
have started our study by extending high performing
heuristics and algorithms from job-shop scheduling. In
particular, at this point in our study, we have imple-
mented slack-based (Smith & Cheng 1993) and texture-
based heuristics (Beck et al. 1997) coupled with several
types of search algorithm, e.g., LDS (Harvey & Gins-
berg 1995) and HBSS (Bresina 1996).
Although the study is preliminary (we still have

to implement other candidate algorithms and study
a wider range of problems), the results are promis-
ing. The min-slack heuristic with greedy search can
construct a preliminary schedule in approximately 2
minutes. Given 500 requests with 120 initial conicts,
we have been able to resolve about 80 percent of the
conicts using this combination. We have found that
texture-based heuristics can further reduce the number
of conicts but at the cost of signi�cantly more compu-
tation.

Interface Aiding Human RSTS Schedulers

When scheduling the Remote Tracking Stations, the
human schedulers may negotiate changes with the in-
dividuals making the resource request. Such negotia-
tion is beyond the abilities of any automated scheduler.
Humans may also accumulate information that is very
hard to quantify (or which should not be quanti�ed).
For example, if clients X and Y are in conict over a re-
source, X may outrank Y and so usually win the conict
despite the fact that the requests are of the same pri-
ority. Human schedulers can anticipate and informally
exploit this type of information.
Thus, instead of trying to fully automate the schedul-

ing process, an alternative approach is to build an in-
teractive system that aids the human scheduler by do-
ing what a computer does best: tediously generating
and trying out alternatives and managing information
about the schedule. In practice, it takes a human ex-
pert about �ve hours to build a preliminary schedule for
satellite scheduling, which our current algorithms can
build in a few minutes.
Once an initial schedule is constructed, a user should

then be able to interactively select, reject or �x parts
of the schedule. When a scheduling decision is made
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Figure 1: User can select a checkpoint in the schedule. A checkpoint indicates a key client request for which the user
wishes to examine options when the system tries to schedule it.

that di�ers from the proposed schedule, the automatic
scheduler can be re-run to �nd a new solution that op-
timizes around the �xed parts of the schedule. Since
automated scheduling methods are to be used to gen-
erate initial schedules and to do rescheduling, very fast
rescheduling methods may sometimes (but not always)
be required.
Such an environment can do more than just provide

an interface to the actual schedule and scheduling al-
gorithms. It can also provide a data analysis tool to
better understand the scheduling problems and statis-
tic data about client requests and past schedules which
may be useful in constructing new schedules.
It is common to �nd references to \interactive

scheduling" in the literature, but there appears to be
a limited number of ideas about how best to do this.
There is general agreement that the user should inter-
act with a schedule at an abstract, ideally graphical
level that hides schedule implementation and optimiza-
tion details to an appropriate degree (Smith & Lassila
1994) (Smith, Lassila, & Becker 1994) (Tate, Drabble,
& Kirby 1994). Interactive Gantt Charts are a popular
way to achieve this goal (Sadeh 1994). Generally, the
user can make a change to the schedule; in response,
the scheduler may be called upon to propagate the ef-
fects of the change and perhaps to optimize in response
to the change (Yen & Pinedo 1994) (Deale et al. 1994).
These ideas are incorporated in our prototype system.

Example of Scheduling Interface

To demonstrate the basics of our proposed system, we
will step through an example showing how it will look to
a user. In the example terminology, the \Clients" will
be those requesting time on a Remote Tracking Station;
the \Users" are the schedulers who assign satellite re-
sources to clients. The �gures that follow are mock-ups
of proposed visualizations for the user.

Figure 2: Display of suggested actions for scheduling
a particular request. After a checkpoint has caused a
stop, the user can determine what should be done with
the request.

Figure 1 illustrates a hypothetical situation where
the initial set of requests has been displayed, with
darker levels of gray-scale indicating greater conict
(this would be in color online). The user can examine
the set and then select a speci�c request to be \check-
pointed". The dark rectangle outline highlights a spe-
ci�c client request. If this particular request appears
to represent a signi�cant bottleneck, the request can be
checkpointed to allow the user to look at the partial
schedule as it exists at the point when the system is
trying to schedule this particular request.

Once the system has scheduled up until the check-
pointed request, the user has some latitude in how
to handle it. For example, Figure 2 illustrates sug-
gested scheduling alternatives for a speci�c client re-
quest which has been highlighted and checkpointed as
illustrated in the previous �gure 1. The display shows
several scheduling alternatives for this client request
and data on how this impacts the schedule (i.e., the

2nd NASA International Workshop on Planning and Scheduling for Space          249



Allocated Duration vs. Requested Duration

Client ID: 51

Resource: Thule

Dates:
2/1/99 - 6/15/99

optimal allocation

Figure 3: Graph for a single client mapping hypothetical previous resource requests by size on the x-axis against
the actual time allocated on the y-axis. A scheduler could infer from this data that this client is more exible about
receiving less than the request time on a resource when the original request is larger.

change in evaluation expected for each action).

To expedite the decision, the user could decide to
look at historical information about the client making
the request. Figure 3 illustrates a hypothetical situ-
ation where historical data is available about a client
requesting a resource. The graph shows the actual du-
ration allocated as a function of the original resource
request. We know from human schedulers that some
clients are more exible than others; exibility may also
be a function of the size of the resource requested (as
shown in this graph) or a function of the type of re-
source requested (which is not shown here).

Finally, �gure 4 illustrates the set of recent emer-
gency requests. One might de�ne emergency requests
to be those client requests which arrive in the last 24
hours before a schedule becomes active, or any requests
that arrive after the schedule is active. In this case,
the idea is that such requests are not random. A possi-
ble scheduling strategy is to avoid scheduling tasks on
resources and speci�c time slots that have a recent his-
tory of high emergency incidence. Human schedulers

currently use a similar strategy for this application.

Project Status

At present, we have implemented a problem generator
and a web based interface for viewing and manipulat-
ing schedules. The problem generator was necessary
due to the sensitive nature of the application. We can
automatically construct problems that are typical of the
types received by the Air Force without compromising
security. In addition, the generator allows us to ex-
ert experimental control during testing and evaluation.
The generator (Howe et al. 2000) can be parameterized
with the number of requests, disparity in their time win-
dow and duration sizes, and amount of clustering (con-
tention at same times on the same resource). Based on
the results of our evaluations, the best set of algorithms
and heuristics will be included into the �nal system, al-
lowing for particular algorithm/heuristic combinations
to be selected. We recognize that users may wish to fa-
vor speed over optimality and thus iterative repair over
optimization algorithms.
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Figure 4: Pro�le of emergency requests submitted during the previous 40 days

Because of the importance of the interface for these
types of systems and the need to solicit feedback from
the users and experts for the applications, the interface
has been implemented in Java and will be accessible via
the World Wide Web. This will allow Air Force users
all over the world to access our system and demo the
interactive scheduling environment. At present, the sys-
tem generates initial schedules using min-slack/greedy
search and allows the user to view, add, delete or move
requests within the proposed schedule.
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